Магнитная индукция
Магнитная индукция — это силовая характеристика магнитного поля в выбранной точке пространства. Она определяет силу, с которой магнитное поле воздействует на заряженную частицу, что движется внутри него. Магнитная индукция считается фундаментальной характеристикой магнитного поля (как напряжённость для электрического поля).
Магнитная индукция описывает магнитную силу (вектор) на тестовом объекте (например, на куске железа) в каждой точке пространства. Простыми словами: если естественный магнит поднести к магнитным веществам (таким, как железо, никель, кобальт и т. д.), это вызовет в них магнитные свойства, которые называются «магнитной индукцией». Магнитная индукция используется для создания искусственных магнитов.
Магнитная индукция также называется плотностью магнитного потока.
Магнитная индукция измеряется:
- в системе СИ единицей тесла (Тл),
- в системе СГС единицей гаусс (Гс).
Соотношение между Тл и Гс: 1 Тл = 10 000 Гс.
Магнитная индукция — это векторная величина и обозначается буквой B со стрелочкой:
Индукция (от лат. inducere — вводить, наведение) — производство токов в цепи под действием магнита или другого тока.
Формулы вычисления магнитной индукции
Формула магнитной индукции:
Формула магнитной индукции: B = Mmax/IS
Где:
- B — индукция магнитного поля (в Тл)
- Mmax — максимальный крутящий момент магнитных сил, приложенных к рамке (в Нм)
- l — длина проводника (в м)
- S — площадь рамки (в м²)
Другие формулы, где встречается B
Эти формулы также можно использовать для её расчёта.
Сила Ампера:
Сила Ампера: Fa=IBL sinα
Где:
- Fa — сила Ампера (в Н — ньютон)
- I — сила тока (в А — ампер)
- B — индукция магнитного поля (в Тл)
- L — длина проводника (в м)
- α — угол между вектором В и одним из направлений (силы тока, скорости или др.; измеряется в рад. или град.)
Сила Лоренца:
Сила Лоренца: Fл = qvB sinα
Где:
- Fл — сила Лоренца (в Н — ньютон)
- q — заряд частицы (в Кл — кулон)
- v — скорость (в м/с)
- B — индукция (в Тл)
- α — угол между вектором В и одним из направлений (силы тока, скорости, или др.; измеряется в рад. или град.))
Магнитный поток:
Магнитный поток: Ф = BS cosα
Где:
- Ф — магнитный поток (в Вб — вебер)
- B — индукция (в Тл)
- S — площадь рамки (в м²)
- α — угол между вектором В и одним из направлений (силы тока, скорости, или др.; измеряется в рад. или град.))
Электромагнитная индукция и магнитная индукция: какая между ними разница?
Электромагнитная индукция — это производство электродвижущей силы, создаваемой в результате относительного движения между магнитным полем и проводником.
Магнитная индукция может производить постоянный магнит, но может и не производить.
Электромагнитная индукция создаёт ток, но таким образом, что этот созданный ток противодействует изменению магнитного поля.
В электромагнитной индукции используются магниты и электрические цепи, а в магнитной индукции используются только магниты и магнитные материалы.
Магнитная индукция
Магни́тная инду́кция — векторная физическая величина, являющаяся силовой характеристикой магнитного поля, а именно характеристикой его действия на движущиеся заряженные частицы и на обладающие магнитным моментом тела.
Магнитная индукция | |
---|---|
[math]\displaystyle< \vec B >[/math] | |
Размерность | MT −2 I −1 |
Единицы измерения | |
СИ | Тл |
СГС | Гс |
Примечания | |
Векторная величина |
Стандартное обозначение: [math]\displaystyle< \vec B >[/math] ; единица измерения в СИ — тесла (Тл), в СГС — гаусс (Гс) (связь: 1 Тл = 10 4 Гс).
Величина магнитной индукции фигурирует в ряде важнейших формул электродинамики, включая уравнения Максвелла.
Для измерения магнитной индукции [math]\displaystyle< \vec B >[/math] используются магнитометры-тесламетры. Также она может быть найдена расчётным путём — в статической ситуации для этого достаточно знать пространственное распределение токов.
Вектор [math]\displaystyle< \vec B >[/math] в общем случае зависит от координат рассматриваемой точки и времени [math]\displaystyle< t >[/math] . Он не инвариантен относительно преобразований Лоренца и изменяется при смене системы отсчёта.
Содержание
Магнитная индукция [math]\displaystyle< \vec B >[/math] — это такой вектор, что сила Лоренца [math]\displaystyle< \vec F >[/math] , действующая со стороны магнитного поля [1] на заряд [math]\displaystyle< q^* >[/math] , движущийся со скоростью [math]\displaystyle< \vec v >[/math] , равна
Косым крестом обозначено векторное произведение, α — угол между векторами скорости и магнитной индукции (вектор [math]\displaystyle< \vec F >[/math] перпендикулярен им обоим и направлен по правилу левой руки).
Также магнитная индукция может быть определена [2] как отношение максимального механического момента сил, действующих на рамку с током, помещённую в предполагаемое однородным (на расстояниях порядка размера рамки) магнитное поле, к произведению силы тока [math]\displaystyle< I^* >[/math] в рамке на её площадь. Момент сил зависит от ориентации рамки и достигает максимального значения при каких-то определённых углах. Звёздочка у символа указывает на то, что заряд или ток являются «пробными», то есть используемыми именно для регистрации поля, в отличие от тех же величин без звёздочки.
Магнитная индукция выступает основной, фундаментальной характеристикой магнитного поля, аналогичной вектору напряжённости электрического поля [math]\displaystyle < \vec
Общий случай
В общем случае расчёт магнитной индукции проводится совместно с расчётом электрической составляющей электромагнитного поля посредством решения системы уравнений Максвелла:
где [math]\displaystyle< \mu_0 >[/math] — магнитная постоянная, [math]\displaystyle< \mu >[/math] — магнитная проницаемость, [math]\displaystyle< \varepsilon >[/math] — диэлектрическая проницаемость, а [math]\displaystyle< c >[/math] — скорость света в вакууме. Через [math]\displaystyle< \rho >[/math] обозначена плотность заряда (Кл/м 3 ) и через [math]\displaystyle < \vec
Магнитостатика
В магнитостатическом пределе [3] расчёт магнитного поля может быть выполнен с использованием формулы Био—Савара—Лапласа. Вид этой формулы несколько различен для ситуаций, когда поле создаётся текущим по проводу [math]\displaystyle< L_1 >[/math] током [math]\displaystyle< I >[/math] и когда оно создаётся объёмным распределением тока:
В магнитостатике эта формула играет ту же роль, что закон Кулона в электростатике. Формула позволяет вычислить магнитную индукцию в вакууме. Для случая магнитной среды необходимо использовать уравнения Максвелла (без слагаемых с производными по времени).
Если заранее очевидна геометрия поля, помогает теорема Ампера о циркуляции магнитного поля [4] (эта запись является интегральной формой уравнения Максвелла для [math]\displaystyle< \mathrm
[math]\displaystyle < \oint\limits_>[/math] .
Здесь [math]\displaystyle< S >[/math] — произвольная поверхность, натянутая на выбранный замкнутый контур [math]\displaystyle< L >[/math] .
Вектор магнитной индукции прямого провода с током [math]\displaystyle< I >[/math] на расстоянии [math]\displaystyle< a >[/math] от него составляет
где [math]\displaystyle< \vec
Вектор магнитной индукции прямого внутри соленоида с током [math]\displaystyle< I >[/math] и числом витков на единицу длины [math]\displaystyle< n >[/math] равен
[math]\displaystyle < \vec= \mu_0\mu nI\cdot\vec
где [math]\displaystyle< \vec
Магнитная индукция и напряжённость магнитного поля связаны через соотношение
[math]\displaystyle < \vec= \mu_0\mu\vec
где [math]\displaystyle< \mu >[/math] — магнитная проницаемость среды (вообще говоря, это тензорная величина, но в большинстве реальных случаев её можно считать скаляром, то есть просто константой конкретного материала).
Поскольку вектор магнитной индукции является одной из основных фундаментальных физических величин в теории электромагнетизма, он входит в большое число уравнений, иногда непосредственно, иногда через связанную с ним напряжённость магнитного поля. По сути, единственная область в классической теории электромагнетизма, где он отсутствует, — это электростатика.
Магнитная индукция (формулы единицы)
Магнитная индукция это векторная величина, которая является силовой характеристикой этого магнитного поля, а именно характеристикой его действия на движущиеся заряженные частицы и на обладающие магнитным моментом тела.
Единицы обозначения: единица измерения в СИ — тесла (Тл), в СГС — гаусс (Гс) (связь: 1 Тл = 10 4 Гс).
Формула магнитной индукции:
Где: B – индукция магнитного поля (в Тл), Mmax – максимальный крутящий момент магнитных сил, приложенных к раме (в Нм), l – длина жилы (в м), S – площадь рамы (в м²)
Что такое магнитная индукция и магнитный поток
Магнитное поле, так же как и электрическое поле, является одной из сторон электромагнитного поля и представляет собой один из видов материи. Оно возникает, например, при движении электрических зарядов и, в частности, вокруг проводов с током.
Магнитное поле обладает энергией называемой энергией магнитного поля, которая проявляет себя различным образом, например в действии одного провода с током на другой провод с током, находящийся в магнитном поле первого, или в действии магнитного поля проводника с током на магнитную стрелку.
Направление, которое указывается северным концом магнитной стрелки, установившейся под действием сил магнитного поля, принимается за направление магнитного поля.
Рис. 1. Правило буравчика.
Направление магнитного поля
Магнитное поле изображается магнитными линиями (линиями магнитной индукции), Они проводятся так, чтобы направление касательной в каждой точке линии совпадало с направлением поля.
Направление магнитного поля связано с направлением тока. Эта связь устанавливается правилом буравчика: если поступательное движение буравчика совпадает с направлением тот (рис 1), то направление вращения рукоятки буравчика укажет направление магнитных линий.
Иногда лучше пользоваться другой формулировкой этого правила: если направление вращения рукоятки буравчика совпадает с направлением тока в контуре (рис. 2), то поступательное движение его укажет направление магнитных линий, пронизывающих поверхность, ограниченную контуром.
Пример определения магнитного поля
Поместим в магнитное поле перпендикулярно его направлению участок прямолинейного провода длиной l, по которому проходит ток I (рис. 3).
Из опыта можно убедиться, что на участок провода будет действовать сила F, по величине пропорциональная току, длине участка проводника и интенсивности магнитного поля, которая характеризуется величиной магнитной индукции В.
Таким образом, сила
Рис. 2. Правило буравчика для кольцевого тока.
Из написанного следует, что
т. е. магнитная индукция измеряется отношением механической силы, действующей на участок провода, по которому проходит ток, к произведению тока и длины участка провода, причем провод должен быть расположен перпендикулярно направлению поля.
Единицы измерения магнитной индукции
В международной системе единиц (СИ) сила измеряется в ньютонах, ток — в амперах, длина — в метрах, поэтому единица измерения магнитной индукции
[B] = [F : (Il)] = н : (a • м) = дж/м : (a • м) = (в • k) : (a • м 2 ) = (в • а • сек) : (a • м 2 ) = (в • сек) : м 2
Единица вольт-секунда называется вебер (вб), а вебер, деленный на квадратный метр, — тесла (тл),
Кроме единицы тесла, иногда применяется гаусс (гс) — единица магнитной индукции, не принадлежащая к системе СИ, при этом
1 гс — 10 -4 тл, или 1 тл = 10 4 гс.
Рис. 3. Провод с током в магнитном поле.
Магнитная индукция — векторная величина. Направление вектора магнитной индукции совпадает с направлением поля в данной точке.
Магнитное поле, во всех точках которого векторы магнитной индукции одинаковы по величине и параллельны друг другу, называется однородным.
Линии магнитной индукции можно использовать не только для указания направления поля, но и для характеристики его интенсивности.
Для этого условно через единичную площадку, перпендикулярную к направлению поля, проводят число линий, равное или пропорциональное величине магнитной индукции в данном месте поля.
Произведение магнитной индукции В на площадь S, перпендикулярную к вектору магнитной индукции, называется магнитным потоком, т. е.
Ф = BS.
В чем измеряется магнитная индукция
Так как магнитная индукция измеряется в теслах (тл), а площадь — в квадратных метрах, и учитывая, что 1 тл = 1вб : 1м2 получим, что магнитный поток измеряется в веберах:
[Ф] = тл • м2 = (вб : м 2 ) • м 2 = вб.
Чем характеризуется магнитная индукция
Более мелкой единицей магнитного потока, не относящейся к системе СИ, является максвелл
1 мкс = 10 -8 вб = 1 гс•см 2 .
Так как магнитная индукция характеризуется числом магнитных линий, проходящих через единицу площади поверхности, перпендикулярной направлению поля, то магнитный поток будет характеризоваться числом линий, проходящих через площадь S.
Индукция магнитного поля
Если поместить проводник с током в магнитном поле, то на него будет действовать сила со стороны этого поля. Эту силу называют силой Ампера.
Опыт показывает, что величина силы Ампера зависит от длины активной части проводника и от тока в нем, а отношение силы F к длине проводника l и к току I есть величина постоянная
F /Il = const.
Эта величина не зависит от длины проводника и силы тока в нем; она характеризует силовые свойства магнитного поля. Эту величину обозначают буквой В и называют вектором индукции магнитного поля
Вектор индукции магнитного поля есть физическая величина, численно равная силе, с которой действует магнитное поле на единичный проводник с единичным током, помещенный в это поле перпендикулярно магнитным силовым линиям.
Направление вектора магнитной индукции В в данной точке магнитного поля совпадает с направлением магнитной силовой линии, проходящей через эту точку.
Величина индукции магнитного поля
Величину индукции магнитного поля запишем в скалярной форме
Формула (1) справедлива при условии, что угол между направлением силовых линий магнитного поля и направлением тока равен 90°. При угле 0° сила равна нулю. Равенство (1) можно записать так:
F = ВIl,
или, когда α ≠ 90°,
Эта запись закона Ампера справедлива для однородного магнитного поля, во всех точках которого вектор магнитной индукции В имеет одно и то же численное значение и направление.
Единица магнитной индукции тесла
За единицу индукции магнитного поля в СИ принимают индукцию такого магнитного поля, которое действует на каждый метр проводника с током в 1 А, расположенного перпендикулярно полю, с силой в 1 Н. Эта единица индукции называется тесла
1Т = (1Н/(1A • 1м)) = 1((Н • м)/(А • м 2 )) = 1(Дж/(A • м 2 )) = 1((А • В • с)/(А • м 2 )) = 1((В • с)/м 2 )
Единица магнитной индукции гаусс
Единицей магнитной индукции в системе СГСМ будет индукция такого однородного магнитного поля, в котором на каждый санти метр длины перпендикулярного к полю прямолинейного проводника, по которому течет ток 10 А, действует сила в 1 дин. Эта единица магнитной индукции называется гауссом
Магнетизм для чайников: основные формулы, определение, примеры
Часто бывает, что задачу не удается решить из-за того, что под рукой нет нужной формулы. Выводить формулу с самого начала – дело не самое быстрое, а у нас на счету каждая минута.
Ниже мы собрали вместе основные формулы по теме «Электричество и Магнетизм». Теперь, решая задачи, вы сможете пользоваться этим материалом как справочником, чтобы не терять время на поиски нужной информации.
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Магнетизм: определение
Магнетизм – это взаимодействие движущихся электрических зарядов, происходящее посредством магнитного поля.
Поле – особая форма материи. В рамках стандартной модели существует электрическое, магнитное, электромагнитные поля, поле ядерных сил, гравитационное поле и поле Хиггса. Возможно, есть и другие гипотетические поля, о которых мы пока что можем только догадываться или не догадываться вовсе. Сегодня нас интересует магнитное поле.
Магнитная индукция
Так же, как заряженные тела создают вокруг себя электрическое поле, движущиеся заряженные тела порождают магнитное поле. Магнитное поле не только создается движущимися зарядами (электрическим током), но еще и действует на них. По сути магнитное поле можно обнаружить только по действию на движущиеся заряды. А действует оно на них с силой, называемой силой Ампера, о которой речь пойдет позже.
Изображение магнитного поля при помощи силовых линий
Прежде чем мы начнем приводить конкретные формулы, нужно рассказать про магнитную индукцию.
Магнитная индукция – это силовая векторная характеристика магнитного поля.
Она обозначается буквой B и измеряется в Тесла (Тл). По аналогии с напряженностью для электрического поля Е магнитная индукция показывает, с какой силой магнитное поле действует на заряд.
Кстати, вы найдете много интересных фактов на эту тему в нашей статье про теорию магнитного поля и интересные факты о магнитном поле Земли.
Как определять направление вектора магнитной индукции? Здесь нас интересует практическая сторона вопроса. Самый частый случай в задачах – это магнитное поле, создаваемое проводником с током, который может быть либо прямым, либо в форме окружности или витка.
Для определения направления вектора магнитной индукции существует правило правой руки. Приготовьтесь задействовать абстрактное и пространственное мышление!
Если взять проводник в правую руку так, что большой палец будет указывать на направление тока, то загнутые вокруг проводника пальцы покажут направление силовых линий магнитного поля вокруг проводника. Вектор магнитной индукции в каждой точке будет направлен по касательной к силовым линиям.
Сила Ампера
Представим, что есть магнитное поле с индукцией B. Если мы поместим в него проводник длиной l, по которому течет ток силой I, то поле будет действовать на проводник с силой:
Это и есть сила Ампера. Угол альфа – угол между направлением вектора магнитной индукции и направлением тока в проводнике.
Направление силы Ампера определяется по правилу левой руки: если расположить левую руку так, чтобы в ладонь входили линии магнитной индукции, а вытянутые пальцы указывали бы направление тока, отставленный большой палец укажет направление силы Ампера.
Сила Лоренца
Мы выяснили, что поле действует на проводник с током. Но если это так, то изначально оно действует отдельно на каждый движущийся заряд. Сила, с которой магнитное поле действует на движущийся в нем электрический заряд, называется силой Лоренца. Здесь важно отметить слово «движущийся», так на неподвижные заряды магнитное поле не действует.
Итак, частица с зарядом q движется в магнитном поле с индукцией В со скоростью v, а альфа – это угол между вектором скорости частицы и вектором магнитной индукции. Тогда сила, которая действует на частицу:
Как определить направление силы Лоренца? По правилу левой руки. Если вектор индукции входит в ладонь, а пальцы указывают на направление скорости, то отогнутый большой палец покажет направление силы Лоренца. Отметим, что так направление определяется для положительно заряженных частиц. Для отрицательных зарядов полученное направление нужно поменять на противоположное.
Если частица массы m влетает в поле перпендикулярно линиям индукции, то она будет двигаться по окружности, а сила Лоренца будет играть роль центростремительной силы. Радиус окружности и период обращения частицы в однородном магнитном поле можно найти по формулам:
Взаимодействие токов
Рассмотрим два случая. Первый – ток течет по прямому проводу. Второй – по круговому витку. Как мы знаем, ток создает магнитное поле.
В первом случае магнитная индукция провода с током I на расстоянии R от него считается по формуле:
Мю – магнитная проницаемость вещества, мю с индексом ноль – магнитная постоянная.
Во втором случае магнитная индукция в центре кругового витка с током равна:
Также при решении задач может пригодиться формула для магнитного поля внутри соленоида. Соленоид – это катушка, то есть множество круговых витков с током.
Пусть их количество – N, а длина самого соленоилда – l. Тогда поле внутри соленоида вычисляется по формуле:
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Магнитный поток и ЭДС
Если магнитная индукция – векторная характеристика магнитного поля, то магнитный поток – скалярная величина, которая также является одной из самых важных характеристик поля. Представим, что у нас есть какая-то рамка или контур, имеющий определенную площадь. Магнитный поток показывает, какое количество силовых линий проходит через единицу площади, то есть характеризует интенсивность поля. Измеряется в Веберах (Вб) и обозначается Ф.
S – площадь контура, альфа – угол между нормалью (перпендикуляром) к плоскости контура и вектором В.
При изменении магнитного потока через контур в контуре индуцируется ЭДС, равная скорости изменения магнитного потока через контур. Кстати, подробнее о том, что такое электродвижущая сила, вы можете почитать в еще одной нашей статье.
По сути формула выше – это формула для закона электромагнитной индукции Фарадея. Напоминаем, что скорость изменения какой-либо величины есть не что иное, как ее производная по времени.
Для магнитного потока и ЭДС индукции также справедливо обратное. Изменение тока в контуре приводит к изменению магнитного поля и, соответственно, к изменению магнитного потока. При этом возникает ЭДС самоиндукции, которая препятствует изменению тока в контуре. Магнитный поток, который пронизывает контур с током, называется собственным магнитным потоком, пропорционален силе тока в контуре и вычисляется по формуле:
L – коэффициент пропорциональности, называемый индуктивностью, который измеряется в Генри (Гн). На индуктивность влияют форма контура и свойства среды. Для катушки с длиной l и с числом витков N индуктивность рассчитывается по формуле:
Формула для ЭДС самоиндукции:
Энергия магнитного поля
Электроэнергия, ядерная энергия, кинетическая энергия. Магнитная энергия – одна из форм энергии. В физических задачах чаще всего нужно рассчитывать энергию магнитного поля катушки. Магнитная энергия катушки с током I и индуктивностью L равна:
Объемная плотность энергии поля:
Конечно, это не все основные формулы раздела физики « электричество и магнетизм » , однако они часто могут помочь при решении стандартных задач и расчетах. Если же вам попалась задача со звездочкой, и вы никак не можете подобрать к ней ключ, упростите себе жизнь и обратитесь за решением в сервис студенческой помощи.