Какая физическая величина является силовой характеристикой электрического поля
Перейти к содержимому

Какая физическая величина является силовой характеристикой электрического поля

  • автор:

16. Электрическое поле и его характеристики. Сила Кулона.

Электрическим полем называют вид материи, посредством которой происходит взаимодействие электрических зарядов. Поле неподвижных зарядов называется электростатическим.

Свойства электрического поля:

• порождается электрическим зарядом;

• обнаруживается по действию на заряд;

• действует на заряды с некоторой силой.

Точечный заряд – модель заряженного тела, размерами которого можно пренебречь в условиях

данной конкретной задачи ввиду малости размеров тела по сравнению с расстоянием от него до

точки определения поля.

Пробный заряд – точечный заряд, который вносится в данное электростатическое поле для измерения его характеристик. Этот заряд должен быть достаточно мал, чтобы своим воздействием не нарушить положение зарядов – источников измеряемого поля и тем

самым не изменить создаваемое ими поле.

Электрический диполь – система двух разноименных по знаку и одинаковых по величине точечных зарядов, находящихся на небольшом расстоянии один от другого. Вектор l, проведенный от отрицательного заряда к положительному, называется плечом диполя. Вектор

p = q*l называется электрическим моментом диполя.

Характеристики электрического поля:

1. силовая характеристика – напряженность (Е) – это векторная физическая величина, численно равная отношению силы, действующей на заряд, помещенный в данную точку поля, к величине этого заряда: Е = F/q; [E] = [ 1 Н/Кл ] = [1 В/м ]

Графически электрическое поле изображают с помощью силовых линий –это линии, касательные к которым в каждой точке пространства совпадают с направлением вектора напряженности.

Силовые линии электрического поля незамкнуты, они начинаются на положительных зарядах и заканчиваются на отрицательных:

2. энергетическая характеристика – потенциал j — это скалярная физическая величина, равная отношению потенциальной энергии заряда, необходимой для его перемещения из одной точки поля в другую, к величине этого заряда: j = DЕр/q. [j] = [1 Дж/Кл ] =[1 В ].

Dj = j2 — j1 – изменение потенциала;

U = j1 — j2 — разность потенциалов (напряжение)

Физический смысл напряжения: U = j1 — j2 = А/q — — напряжение численно равно отношению работы по перемещению заряда из начальной точки поля в конечную к величине этого заряда.

U = 220 В в сети означает, что при перемещении заряда в 1 Кл из одной точки поля в другую, поле совершает работу в 220 Дж.

3. Индукция электрического поля. Напряженность электрического поля является силовой характеристикой поля и определяется не только зарядами, создающими поле, но зависит и от свойств среды, в которой находятся эти заряды.

Часто бывает удобно исследовать электрическое поле, рассматривая только заряды и их расположение в пространстве, не принимая во внимание свойств окружающей среды. Для этой цели используется векторная величина, которая называется электрической индукцией или электрическим смещением. Вектор электрической индукции D в однородной изотропной среде связан с вектором напряженности Е соотношением

.

Единицей измерения индукции электрического поля служит 1 Кл/ м 2 . Направление вектора электрического смещения совпадает с вектором Е. Графическое изображение электрического поля можно построить с помощью линий электрической индукции по тем же правилам, что и для линий напряженности

Графическое изображение электрических полей.

Электрические поля можно изображать графически: при помощи силовых линий или эквипотенциальных поверхностей (которые взаимно перпендикулярны между собой в каждой точке поля.

Силовыми линиями (линиями напряженности) называются линии, касательные в каждой точке к которым совпадают с направлением вектора напряженности в данной точке.

Эквипотенциальные поверхности – это поверхности равного потенциала.

Закон взаимодействия неподвижных точечных электрических зарядов установлен в 1785 г. Ш. Кулоном с помощью крутильных весов, подобных тем, которые (см. § 22) использовались Г. Кавендишем для определения гравитационной постоянной (ранее этот закон был открыт Г. Кавендишем, однако его работа оставалась неизвестной более 100 лет). Точечным называется заряд, сосредоточенный на теле, линейные раз­меры которого пренебрежимо малы по сравнению с расстоянием до других заряжен­ных тел, с которыми он взаимодействует. Понятие точечного заряда, как и материаль­ной точки, является физической абстракцией.

Закон Кулона: сила взаимодействия F между двумя неподвижными точечными зарядами, находящимися в вакууме, пропорциональна зарядам Q1 и Q2 и обратно пропорциональна квадрату расстояния r между ними:

где k коэффициент пропорциональности, зависящий от выбора системы единиц.

Сила F направлена по прямой, соединяющей взаимодействующие заряды, т. е. является центральной, и соответствует притяжению (F<0) в случае разноименных зарядов и отталкиванию (F>0) в случае одноименных зарядов. Эта сила называется кулоновской силой. В векторной форме закон Кулона имеет вид

(78.1)

где F12 — сила, действующая на заряд Q1 со стороны заряда Q2, r12 — радиус-вектор, соединяющий заряд Q2 с зарядом Q1, r = |r12| (рис. 117). На заряд Q2 со стороны заряда Q1 действует сила F21 = –F12.

Какая физическая величина является силовой характеристикой электрического поля

641 дн. с момента
до конца учебного года

погода в Ярославле

Электростатическое поле и его характеристики

Электростатическое поле существующий вокруг неподвижный заряженных тел, действует на заряд с некоторой силой, вблизи заряда – сильнее.
Электростатическое поле не изменяется во времени.
Силовой характеристикой электрического поля является напряженность

Напряженностью электрического поля в данной точке называется векторная физическая величина, численно равная силе, действующей на единичный положительный заряд, помещенный в данную точку поля.

Силовыми линиями (линиями напряженности электрического поля) называют линии, касательные к которым в каждой точке поля совпадают с направлением вектора напряженности в данной точке.

Силовые линии начинаются на положительном заряде и заканчиваются на отрицательном ( Силовые линии электростатических полей точечных зарядов. ).

Густота линий напряженности характеризует напряженность поля (чем плотнее располагаются линии, тем поле сильнее).

Электростатическое поле точечного заряда неоднородно (ближе к заряду поле сильнее).

Силовые линии электростатических полей бесконечных равномерно заряженных плоскостей.
Электростатическое поле бесконечных равномерно заряженных плоскостей однородно. Электрическое поле, напряженность во всех точках которого одинакова, называется однородным.

Электростатическое поле

k — коэффициент пропорциональности, зависящий от выбора системы единиц измерения.

В СИ закон Кулона записывается в виде

Единица электрического заряда — 1 кулон (Кл).

Напряжённость электрического поля.

Единица напряжённости — 1 Н/Кл.

Напряжённость поля точечного заряда:

Принцип суперпозиции.

Электрическое поле бесконечной проводящей плоскости:

σ — поверхностная плотность зарядов, ε — диэлектрическая проницаемость вещества.

Поле двух разноимённо заряженных проводящих плоскостей:

Закон Кулона в диэлектриках:

Работа электростатического поля.

Разность потенциалов.

Разность потенциалов, или напряжение есть отношение работы поля по перемещению заряда между двумя точками к величине этого заряда:

Электрическое поле: основные понятия

Электрические заряды не воздействуют непосредственно друг на друга. Согласно современным представлениям, заряженные тела взаимодействуют посредством силового поля, которое создают вокруг себя.

Это силовое поле воздействует на заряженные тела с некоторой силой. Исследовать электрическое поле, которое окружает тело, несущее заряд, можно с помощью пробного заряда, величина которого незначительна. Особенностью электрического поля точечного заряда является тот факт, что оно не производит заметного перераспределения исследуемых зарядов.

Понятие напряженности электрического поля

Напряженность электрического поля – это силовая характеристика, которая используется для количественного определения электрического поля.

Второе значение термина – физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда.

Напряженность электрического поля можно задать формулой:

Напряжение электрического поля является векторной величиной. Направление вектора E → совпадает с направлением силы, которая воздействует на положительный пробный заряд в пространстве.

Напряженность электрического поля

Какое поле называют электростатическим?

Электростатическое поле – это электрическое поле, которое окружает неподвижные и не меняющиеся со временем заряды.

Очень часто в контексте темы электростатическое поле будет именоваться электрическим для краткости.

Электрическое поле может быть создано сразу несколькими заряженными телами. Такое поле также можно исследовать с помощью пробного заряда. В этом случае мы будем оценивать результирующую силу, которая будет равна геометрической сумме сил каждого из заряженных тем в отдельности.

Напряженность электрического поля, которая создается в определенной точке пространства системой зарядов, будет равна векторной сумме напряженностей электрических полей:

Электрическое поле подчиняется принципу суперпозиции.

Согласно формуле, напряженность электростатического поля, которое создается точечным зарядом Q на расстоянии r от него, в соответствии с законом Кулона, будет равна по модулю:

E = 1 4 πε 0 · Q r 2 .

Это поле называется кулоновским.

В кулоновском поле направление вектора E ⇀ зависит от знака заряда Q : если Q > 0 , то вектор E ⇀ направлен по радиусу от заряда, если Q < 0 , то вектор E ⇀ направлен к заряду.

Обратимся к иллюстрации. На рисунке для большей наглядности мы используем силовые линии электрического поля. Они проходят таким образом, чтобы направление вектора E ⇀ в каждой из точек пространства совпадало с направлением касательной к силовой линии. Густота силовых линий соответствует модулю вектора напряженности поля.

Рисунок 1 . 2 . 1 . Силовые линии электрического поля.

Мы можем использовать как положительные, так и отрицательные точечные заряды. Оба эти случая мы изобразили на рисунке. Электростатическое поле, которое создается системой зарядов, мы можем представить как суперпозицию кулоновских полей точечных зарядов. В связи с этим мы можем рассматривать поля точечных зарядов как элементарные структурные единицы любого электрического поля.

Рисунок 1 . 2 . 2 . Силовые линии кулоновских полей.

Кулоновское поле точечного заряда Q удобно записать в векторной форме. Для этого нужно провести радиус-вектор r → от заряда Q к точке наблюдения. Тогда при Q > 0 вектор E → параллелен r → , а при Q < 0 вектор E → антипараллелен r → .

Следовательно можно записать:

E → = 1 4 π ε 0 · Q r 3 r → ,

где r – модуль радиус-вектора r → .

По заданному распределению зарядов можно определить электрическое поле E → . Такие задачи часто встречаются в таком разделе физики как электростатика. Рассмотрим пример такой задачи.

Предположим, что нам нужно найти электрическое поле длинной однородно заряженной нити на расстоянии R от нее. Для большей наглядности мы привели схему на рисунке ниже.

Рисунок 1 . 2 . 3 . Электрическое поле заряженной нити.

Поле в точке наблюдения P может быть представлено в виде суперпозиции кулоновских полей, создаваемых малыми элементами Δ x нити, с зарядом τ Δ x , где τ – заряд нити на единицу длины. Задача сводится к суммированию (интегрированию) элементарных полей ∆ E → . Результирующее поле оказывается равным

Вектор E → везде направлен по радиусу R → . Это следует из симметрии задачи.

Даже в таком простом примере вычисления могут быть достаточно громоздкими. Упростить математические расчеты позволяет теорема Гаусса, которая выражает фундаментальное свойство электрического поля.

Напряженность электрического поля

Рисунок 1 . 2 . 4 . Модель электрического поля точечных зарядов.

Напряженность электрического поля

Рисунок 1 . 2 . 5 . Модель движения заряда в электрическом поле.

Понятие о диполях

Электрический диполь – это система из двух одинаковых по модулю зарядов, которые отличаются знаками и расположены на некотором расстоянии друг от друга.

Эта система может послужить нам хорошим примером применения принципа суперпозиции полей, а также электрической моделью многих молекул.

Рисунок 1 . 2 . 6 . Силовые линии поля электрического диполя E → = E 1 → + E 2 → .

Дипольный момент p → является одной из наиболее важных характеристик электрического диполя:

где l → – вектор, направленный от отрицательного заряда к положительному, модуль l → = l .

Электрическим дипольным моментом обладает, например, нейтральная молекула воды ( H 2 O ) , так как центры двух атомов водорода располагаются не на одной прямой с центром атома кислорода, а под углом 105 ° . Дипольный момент молекулы воды p = 6 , 2 · 10 – 30 К л · м .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *