Контактная сеть троллейбуса из чего состоит
Перейти к содержимому

Контактная сеть троллейбуса из чего состоит

  • автор:

 

Контактная сеть троллейбуса из чего состоит

Устройство и эксплуатация троллейбуса


Наши дополнительные сервисы и сайты:

e-mail: office@matrixplus.ru
tender@matrixplus.ru
icq: 613603564
skype: matrixplus2012
телефон +79173107414
+79173107418

г. С аратов

Просвещаемся Как правильно и быстро отмыть борта и днище катера от водорослей, тины, ракушечника, водного камня?

Каким средством отмыть катер от тины и водорослей

Купить химию для мойки бортов катеров и яхт

Удаляем быстро всю зелень и отложения с бортов катера и яхты

Где купить оптом химию, моющие средства для мойки катеров и яхт

Вот так с Фаворит-К для мойки катеров можно быстро и без особых усилий отмыть днище и борта катера от любых водных отложений. Читать далее про Фаворит-К.

Конструкция основных элементов контактной сети троллейбуса

Контактная сеть троллейбуса включает в себя контактные провода, подвесную арматуру, специальные устройства, поддерживающие тросовые системы и кронштейны, а также опоры, на которых монтируется сеть. Контактный провод изготовляют из твердонатянутой электролитической меди. Контактные провода имеют стандартный профиль и площадь поперечного сечения 85 мм2 (рис. 179). Для второстепенных и редко используемых линий применяют также провода сечением 65 мм2. Допустимо использовать биметаллический контактный провод со стальной рабочей поверхностью и алюминиевой токопроводящей частью марки ПКСА-80/10.

При больших электрических нагрузках сети, особенно на вылетных линиях, параллельно с контактным проводом подвешивают усиливающий провод, соединяя его через каждые 250-300 м с контактным проводом. Этим достигают увеличения сечения контактного провода. В качестве усиливающего провода можно использовать алюминиевый голый многожильный провод.

Правила технической эксплуатации предусматривают две ступени изоляции контактных проводов (рис. 180). С этой целью используют два последовательно расположенных изолирующих элемента 1, диэлектрические свойства которых соответствуют полному рабочему напряжению сети. Для безопасности работы монтажников расстоя-

Рис. 179. Сечение контактного провода

Рис. 179. Сечение контактного провода

Рис. 180. Схема изоляции контактного провода: а -с изоляцией в точке подвеса, б -без изоляции в точке подвеса; 1 - изоляторы, 2- контактный провод

Рис. 180. Схема изоляции контактного провода: а -с изоляцией в точке подвеса, б -без изоляции в точке подвеса; 1 — изоляторы, 2- контактный провод

Рис. 181. Изоляторы контактной сети: а - пряжковый, б -орешковый, в -из дельта-древесины, г-прессованные

Рис. 181. Изоляторы контактной сети: а — пряжковый, б -орешковый, в -из дельта-древесины, г-прессованные

Рис. 182. Стыковой Б-12 (а) и обхватный (б) зажимные между двумя последовательными изоляторами должно быть не менее 1,5-2 м.

Рис. 182. Стыковой Б-12 (а) и обхватный (б) зажимные между двумя последовательными изоляторами должно быть не менее 1,5-2 м.

На контактной сети применяются разной конструкции изоляторы, изготовленные из различных материалов (рис. 181). Большое распространение получили изоляторы из пластмасс.

Соединение контактных проводов осуществляется стальным стыковым зажимом (рис. 182). Зажим представляет собой цельный конструктивный элемент, имеющий продольный паз, соответствующий профилю контактного провода. Концы проводов удерживаются тремя вертикальными винтами, расположенными с обоих концов зажима. Вертикально расположенные в верхней части зажима винты фиксируют положение провода в зажимг. Прочность такого соединения составляет 92-98% прочности целого провода. Недостаток соединения — большой сосредоточенный вес, создающий значительные динамические нагрузки на контактную сеть.

В последнее время внедряется холодная сварка контактных проводов. Она заключается в том, что аккуратно подготовленные торцы контактных проводов прижимаются друг к другу на специальной установке под очень большим усилием. В результате происходит диффузионная сварка стыка. По прочности такой стык мало чем отличается от цельной части провода.

Подвесная арматура контактной сети должна позволять головке токоприемника беспрепятственно проходить через точки подвеса.

Рис. 183. Четырехвинтовый зажим: 1 - прижимная щечка, 2 - винты, 3 - основная щечка, 4 - грань щечки, 5 -контактный провод

Рис. 183. Четырехвинтовый зажим: 1 — прижимная щечка, 2 — винты, 3 — основная щечка, 4 — грань щечки, 5 -контактный провод

Рис. 184. Троллейбусные подвесы: а - общий вид, б - жесткий одноплечий и жесткий двуплечий, в - вид сверху, г - гибкий для прямых участков, д - гибкий для кривых участков, е - фиксирующий, ж- маятниковый, з - скользящая струна

Рис. 184. Троллейбусные подвесы: а — общий вид, б — жесткий одноплечий и жесткий двуплечий, в — вид сверху, г — гибкий для прямых участков, д — гибкий для кривых участков, е — фиксирующий, ж- маятниковый, з — скользящая струна

Применяемый четырехвинтовой зажим (рис. 183) состоит из двух обтекаемых щечек (основной 3 и прижимной 1), скрепляемых винтами 2 с потайными головками. Верхняя часть одной из щечек имеет прилив с резьбой для крепления подвесного болта, а нижние части щечек — грани 4, входящие в вырезы контактного провода 5 и удерживающие его в необходимом положении.

Подвеска контактной сети осуществляется различными по конструкции подвесами (рис. 184). Жесткие подвесы представляют собой двуплечий кривой рычаг, к которому жестко крепится подвесной зажим. Гибкие подвесы дают некоторую свободу перемещения контактному проводу и тем самым благоприятствуют токосъему. Для предотвращения схлестывания контактных проводов и чрезмерной раскачки их устанавливают сдвоенный подвес в виде треугольника, ограничивающий пространственное перемещение контактных проводов.

Рис. 185. Элементы подвески контактного провода: 1- стенной крюк, б - шумоглушитель, в - натяжная муфта; 1 - эластичная вставка, 2 - корпус, 3 - трос, 4 - клин

Рис. 185. Элементы подвески контактного провода: 1- стенной крюк, б — шумоглушитель, в — натяжная муфта; 1 — эластичная вставка, 2 — корпус, 3 — трос, 4 — клин

Крепление подвески контактного провода выполняется различными методами (рис. 185). Анкеровка (жесткое фиксирование) несущего троса осуществляется клиновым концевым зажимом (рис. 185,в), в который заводят трос, огибающий гладкий клин.

Стенной крюк (рис. 185, а), к которому крепится подвеска, заделывают в стену. В отверстие стены вставляют стержень крюка вместе с закрепами. Если резко выдернуть стержень, то он своим конусным концом расклинивает закрепы. Закрепы входят острыми краями в стену и не дают выдернуть крюк из отверстия. Один стенной крюк выдерживает нагрузку до 700 кгс.

Несущий трос крепят к стенному крюку через шумоглушитель (рис. 185, б), чтобы снизить уровень шума, передаваемого стенам здания от скольжения токоприемника по проводу. В конструкции предусмотрена эластичная вставка 1 для гашения колебаний.

Контактная сеть делится на отдельные участки с помощью секционных изоляторов, имеющих воздушные промежутки. При прохождении токоприемника через этот изолятор возникает электрическая дуга, которая способна перекрыть воздушный промежуток между двумя изолированными участками и тем самым разрушить изолятор. Поэтому в контактной сети троллейбуса применяется секционный изолятор СИ-6Д (рис. 186) с устройством для гашения электрической дуги. Несмотря на наличие дугогасящего устройства, секционный изолятор необходимо проезжать в режиме выбега, чтобы исключить поджог коллектора.

Контактные провода подводят к секционному изолятору с обоих концов и закрепляют в концевых зажимах 1 секционного изолятора. Ходовые элементы 2 и 4 выполнены из контактного провода, зазор между ними составляет 12-16 мм. Над вторым по ходу воздушным зазором располагается дугогасительная камера 3. Первый ходовый элемент 2 электрически соединен через дугогасительную катушку 5 с контактным проводом. Второй ходовый элемент 4 электрически нейтрален и отделен воздушными зазорами от концов изолятора, находящегося под потенциалом присоединенных участков контактной сети. Основная часть изолятора выполнена из двух изоляционных брусов 6, скрепленных по концам дугообразными косынками и соединительными деталями.

Рис. 186. Секционный изолятор СИ-6Д: 1- концевой зажин, 2, 4 - ходовые элементы, 3 - дугогасительная камера, 5 -дугогасительная катушка, 6 - изоляционный брус

Рис. 186. Секционный изолятор СИ-6Д: 1- концевой зажин, 2, 4 — ходовые элементы, 3 — дугогасительная камера, 5 -дугогасительная катушка, 6 — изоляционный брус

Токоприемник троллейбуса, находясь на токоведущем элементе секционного изолятора, может получить ток только через дугогасительную катушку. Электромагнитное поле, возникшее при этом, взаимодействует с полем электрической дуги и затягивает ее по рогам в камеру, где она растягивается и гасится. Применение электромагнитного гашения дуги повышает надежность и долговечность секционного изолятора. Скорость движения троллейбуса при прохождении изолятора неограниченна.

В эксплуатационных условиях иногда необходимо перемкнуть изолятор; для этого предусмотрены латунные втулки с прижимными болтами. Перемычка представляет собой отрезок контактного провода, заведенный в латунные втулки изолятора.

для железнодорожного транспорта, сертифицированные ВНИИЖТ- "Фаворит К" и "Фаворит Щ", внутренняя и наружная замывка вагонов.

Контактная сеть троллейбуса или почему мы едем медленнее чем нам хотелось бы) ⁠ ⁠

Все вы видели, как троллейбус на прямой ровной дороге едет медленно, или на долгом повороте еле тащится. Раньше меня это раздражало, а потом я познакомился с контактной сетью (дальше КС). Все что будет описано дальше, упрощено для лучшего восприятия.

1. Шины грузовой компенсации.

Контактная сеть троллейбуса или почему мы едем медленнее чем нам хотелось бы) Троллейбус, не, Тег, Гифка, Длиннопост

Нужны нашей КС что бы при перепадах температур, провода не обвисали при жаре или не рвались при лютом морозе. Скорость прохождения до 20км\ч. Скорость установлена не просто так, эти планки на проводах могут повернуться или погнуться и на большой скорости зацепишься и будешь собирать провода по земле, а если не повезет то еще и рога загнешь в каральку.)

2. Кривые малого радиуса.

Эти ребята ставятся на поворотах, что бы не брать провод на излом и увеличить срок службы нашей КС. Скорость прохождения до 15км\ч. На них штанги потерять еще проще. Скорость большая — штанги летят, взял неправильный радиус — штанги летят, а если ты еще и остановился неправильно после схода штанг, то штанги летят от малейшего толчка при начале движения. (Я как то после выхода с учебки 15 минут в кольце пытался съехать с мертвой точки, взял неправильный радиус и при каждом начале движения штанги летели, за те 15 минут у меня было сходов 20-25, больше я так не балуюсь)))

3. Стрелки. Автоматические и сходные.

Контактная сеть троллейбуса или почему мы едем медленнее чем нам хотелось бы) Троллейбус, не, Тег, Гифка, Длиннопост

Ну на пикабу обсуждали уже много раз. Скорость прохождения стрелок до 10км\ч. На автоматических стрелках штанги могут уйти не туда, разойтись на провода разных направлений ну и конечно слететь весело брякая по крыше и проводам. Обычно более опытные водители проходят их вообще пешком скоростью не более 5км\ч. Делается это от греха подальше, что бы потом не прыгать вокруг троллейбуса и подвергать свою жизнь опасности.

4. Воздушные пересечения троллейбус — троллейбус и трамвай — троллейбус.

Контактная сеть троллейбуса или почему мы едем медленнее чем нам хотелось бы) Троллейбус, не, Тег, Гифка, Длиннопост

Контактная сеть троллейбуса или почему мы едем медленнее чем нам хотелось бы) Троллейбус, не, Тег, Гифка, Длиннопост

Служат нам так же как и перекрестки на дорогах, скорость прохождения до 20км\ч. Опять таки опытные водители снижают скорость еще больше.

5. Секционный изолятор

Контактная сеть троллейбуса или почему мы едем медленнее чем нам хотелось бы) Троллейбус, не, Тег, Гифка, Длиннопост

Скорость проезда на нем не ограничена)))

Так же вот копипаста с ПТЭ водителя троллейбуса.

Наибольшая скорость движения троллейбусов на перегонах устанавливается организацией ГЭТ с соблюдением требований, приведенных в ПДД и настоящих правилах.

Водитель должен вести троллейбус со скоростью, не превышающем установленного ограничения, учитывая при этом интенсивность движения, состояние и наполнение троллейбуса, дорожные и метеорологические условия, в частности видимость в направлении движения.

При возникновении опасности для движения, которую водитель в состоянии обнаружить, он должен принять возможные меры к снижению скорости вплоть до полной остановки троллейбуса.

Скорость движения не должна превышать, км/ч:

40 — на спусках от 4,0 (40) до 5,0 (50) % (‰),

35 — на спусках свыше 5,0 (50) до 7,0 (70) % (‰),

30 — на спусках свыше 7,0 (70) до 9,0 (90) % (‰),

20 — на железнодорожных переездах, при прохождении воздушных пересечений контактной сети, при прохождении шин грузовой компенсации контактной сети, при буксировке троллейбуса, при проезде мест, где на проезжей части улицы ведутся какие-либо работы;

15 — при проезде мимо шествий, колонн воинских частей, при проезде мимо стоящих трамвайных вагонов или объезде остановившихся в пути троллейбусов или автотранспорта, при плохой видимости лежащих впереди участков пути, при прохождении кривых малого радиуса (до 70 м);

10 — при прохождении воздушных стрелок контактной сети;

5 — при проезде мест скопления пешеходов, при движении назад, при движении в пределах депо, при плохой видимости (густом тумане и метели), при движении троллейбуса с предельным отклонением штанг токоприемника от оси подвески контактного провода, на участке дороги, покрытой водой (или мокрым снегом).

1. Запрещается движение троллейбусов, если дорога покрыта водой (или мокрым снегом) на высоту более 150 мм.

2. В осенне-зимний период в условиях гололеда допускаемая скорость, должна быть уменьшена вдвое.

На горных дорогах, проходящих за чертой города, в том числе и на затяжных спусках свыше 40 ‰ (4 %) скорость движения регламентируется особыми правилами.

Скорость движения троллейбусов на участках с тяжелыми условиями движения, уклонах, путепроводах и местах, требующих особого режима движения, устанавливается организацией ГЭТ. В этих местах должны быть установлены соответствующие знаки ограничения скорости движения.

От себя добавлю. Троллейбусы могут гонять и они гоняют по ночам(когда дороги пусты). Но у нас в обязанности входит обеспечение безопасности движения и обеспечение сохранности подвижного состава поэтому днем мы ездим соблюдая все осторожности.

Если вам интересно на что способен троллейбус в плане маневрирования, то каждый год проводится конкурс водителей и обычно в этот день двери депо открыты для всех, сходите и посмотрите на езду по полигону.

Сколько вольт в троллейбусных проводах?

Общественный транспорт на электрической тяге появился более 130 лет назад, сегодня на фоне экологических проблем он получил максимальное распространение. Трамваи, троллейбусы, пригородные поезда и железнодорожные локомотивы комплектуются сегодня мощными электродвигателями. Электроэнергия для их питания подается с тяговых подстанций по контактной сети. Ее основой являются провода, осуществляющие контакт с токоприемником в процессе токосъема. Сегодня существуют провода контактной сети, состоящие из одного или двух проводов. Двойные провода используют для улучшения качества токосъема при силе тока более 1000А.

Особенности провода контактной сети

К проводам, используемым при создании контактных сетей, предъявляется ряд требований. Основными среди них являются:

  • высокая износоустойчивость;
  • прочность;
  • высокое качество токосъема;
  • гладка поверхность контакта;
  • небольшая парусность.

Всем этим требованиям отвечает провод контактный марки МФ, аббревиатура которого расшифровывается как «медный фасонный». Свое название он получил из-за оригинальной формы сечения, напоминающей восьмерку. Образовалась она путем появления в медном проводе двух желобов, используемых для надежной фиксации подвесной арматуры. Получают такие провода контактной сети путем холодного проката медной проволоки. Там, где предъявляют особые требования к износоустойчивости провода, используют биметаллический провод. Он имеет высокопрочный стальной сердечник, покрытый медным слоем. Для снижения парусности контактной сети используют провод с овальным сечением, обеспечивающий хорошее качество токосъема.

Контактные провода на железной дороге

Железная дорога сегодня является основным потребителем контактного провода. Наиболее часто применяется провод с сечением в 100, 120 и 150 кв.мм, его используют на перегонах и главных путях железнодорожных станций. На линиях, электрифицированных постоянных током, применяется провод марки М-95 и М-120. На линиях переменного тока используют биметаллические тросы, свитые из биметаллических проволок. Их преимуществом является высокая прочность, износоустойчивость, устойчивость к коррозии. Применяют контактный провод на железной дороге и с сечением в 70 кв.мм, им комплектуют пути, на которых работают маневровые локомотивы. За рубежом разнообразие провода контактных сетей железных дорог еще шире, сечение используемого провода варьируется от 65 до 194 кв.мм.

Материалом для контактного провода является электролитическая медь, в ряде стран используют бронзу. Бронзовый сплав с добавлением кадмия усиливает качество токосъема, позволяет использовать более высокие напряжения. Его износоустойчивость в два раза выше, чем у медного провода, но высокая стоимость ограничивает сферу применения такого контактного провода.

Троллейбусные контактные провода

Контактная сеть троллейбуса является наиболее сложной, ее особенностью является наличие двух проводов. Каждый контактный полюс троллейбуса имеет свою полярность, поэтому их тщательно защищают от возможного сближения. Кроме этого контактная сеть комплектуется стрелками, системами пересечения разных троллейбусных линий. Провод имеет классическую фасонную форму и производится из твердотянутой медной проволоки. На основных магистралях используется провод с сечением 85 кв.мм, для редко используемых и запасных путей применяется провод сечением в 65 кв.мм. Допускается применение биметаллического провода, имеющего стальную рабочую поверхность.

Как получает питание городской и междугородний электрический транспорт

Городской и междугородний электротранспорт стали для современного человека привычными атрибутами его повседневной жизни. Мы давно уже не задумываемся о том, как этот транспорт получает питание. Все знают, что автомобили заправляют бензином, педали велосипедов крутят ногами велосипедисты. Но как же питаются электрические виды пассажирского транспорта: трамваи, троллейбусы, монорельсовые поезда, метро, электропоезда, электровозы? Откуда и как подается к ним движущая энергия? Давайте поговорим об этом.

В былые времена каждое новое трамвайное хозяйство было вынуждено иметь собственную электростанцию, поскольку электрические сети общего пользования еще не были в достаточной степени развиты. В 21 веке энергия для контактной сети трамваев подается от сетей общего назначения.

Питание осуществляется постоянным током относительно невысокого напряжения (550 В), которое было бы просто не выгодно передавать на значительные расстояния. По этой причине вблизи трамвайных линий размещены тяговые подстанции, на которых переменный ток из сети высокого напряжения преобразуется в постоянный ток (с напряжением 600 В) для контактной сети трамвая. В городах, где ходят и трамваи и троллейбусы, данные виды транспорта обычно имеют общее энергохозяйство.

На территории бывшего Советского Союза представлены две схемы электроснабжения контактных сетей для трамваев и троллейбусов: централизованная и децентрализованная. Централизованная появилась первой. В ней крупные тяговые подстанции, оснащенные несколькими преобразовательными агрегатами, обслуживали все прилегающие к ним линии, или линии, находящиеся на расстоянии до 2 километров от них. Подстанции данного типа располагаются сегодня в районах высокой плотности трамвайных (троллейбусных) маршрутов.

Децентрализованная система начала формироваться после 60-х годов, когда стали появляться вылетные линии трамваев, троллейбусов, метро, как то из центра города вдоль шоссе, в отдаленный район города и т. п.

Здесь на каждые 1-2 километра линии установлены тяговые подстанции малой мощности с одним или двумя преобразовательными агрегатами, способные питать максимум два участка линии, причем каждый участок на конце может подпитываться соседней подстанцией.

Так потери энергии оказываются меньше, ибо фидерные участки выходят короче. К тому же если на одной из подстанций случится авария, участок линии все равно останется под напряжением от соседней подстанции.

Контакт трамвая с линией постоянного тока осуществляется через токоприемник на крыше его вагона. Это может быть пантограф, полупантограф, штанга или дуга. Контактный провод трамвайной линии обычно подвешен проще, чем железнодорожный. Если используется штанга, то воздушные стрелки устроены подобно троллейбусным. Отвод тока обычно осуществляется через рельсы — в землю.

У троллейбуса контактная сеть разделена секционными изоляторами на изолированные друг от друга сегменты, каждый из которых присоединен к тяговой подстанции при помощи фидерных линий (воздушных или подземных). Это легко позволяет производить избирательное отключение отдельных секций для ремонта в случае их повреждения. Если неисправность случится с питающим кабелем, возможна установка перемычек на изоляторы, чтобы запитать пострадавшую секцию от соседней (но это нештатный режим, связанный с риском перегрузки фидера).

Тяговая подстанция понижает переменный ток высокого напряжения от 6 до 10 кВ и преобразует его в постоянный, с напряжением 600 вольт. Падение напряжения на любой точке сети, согласно нормативам, не должно быть более 15%.

Троллейбусная контактная сеть отличается от трамвайной. Здесь она двухпровдная, земля не используется для отвода тока, поэтому данная сеть устроена сложнее. Провода располагаются друг от друга на небольшом расстоянии, поэтому требуется особо тщательная защита от сближения и замыкания, а также изоляция на местах пересечений троллейбусных сетей между собой и с трамвайными сетями.

Поэтому на местах пересечений устанавливаются специальные средства, а также стрелки на местах ветвлений. Кроме того выдерживается определенное регулируемое натяжение, предохраняющее от захлестов проводов во время ветра. Вот почему для питания троллейбусов используются штанги — другие приспособления просто не позволят соблюсти все эти требования.

Штанги троллейбусов чувствительны к качеству контактной сети, ведь любой ее дефект может послужить причиной соскока штанги. Есть нормы, согласно которым угол излома в месте крепления штанги не должен быть более 4°, а при повороте на угол более 12° устанавливаются кривые держатели. Токосъемный башмак движется вдоль провода и не может поворачивать вместе с троллейбусом, поэтому здесь необходимы стрелки.

Во многих городах земного шара с недавних пор ходят монорельсовые поезда: в Лас-Вегасе, в Москве, в Торонто и т.д. Их можно встретить в парках развлечений, в зоопарках, монорельсы используются для обзора местных достопримечательностей, и, конечно, для городского и пригородного сообщения.

Колеса таких поездов изготовлены вовсе не из чугуна, а из литой резины. Колеса просто направляют монорельсовый поезд вдоль бетонной балки — рельсы, на которой находится колея и линии (контактный рельс) силового электропитания.

Некоторые монорельсовые поезда устроены таким образом, что как-бы насажены на колею сверху, подобно тому, как человек сидит верхом на лошади. Некоторые монорельсы подвешиваются к балке снизу, напоминая гигантский фонарь на столбе. Безусловно, монорельсовые дороги более компактны чем обычные железные дороги, но их строительство обходится дороже.

Некоторые монорельсы имеют не только колеса, но и дополнительную опору на основе магнитного поля. Московский монорельс, например, движется как раз на магнитной подушке, создаваемой электромагнитами. Электромагниты находятся в подвижном составе, а в полотне направляющей балки — стоят постоянные магниты.

В зависимости от направления тока в электромагнитах подвижной части, монорельсовый поезд движется вперед или назад по принципу отталкивания одноименных магнитных полюсов — так работает линейный электродвигатель.

Кроме резиновых колёс у монорельсового поезда есть ещё и контактный рельс, состоящий из трёх токоведущих элементов: плюс, минус и земля. Напряжение питания линейного двигателя монорельса — постоянное, равное 600 вольт.

Электропоезда метрополитена получают электричество от сети постоянного тока — как правило, от третьего (контактного) рельса, напряжение на котором составляет 750—900 Вольт. Постоянный ток получают на подстанциях из переменного тока с помощью выпрямителей.

Контакт поезда с контактным рельсом осуществляется через подвижный токосъемник. Располагается контактный рельс права от путей. Токосъемник (так называемая «токоприемная лапа» ) находится на тележке вагона, и прижимается к контактному рельсу снизу. Плюс находится на контактном рельсе, минус — на рельсах поезда.

Кроме силового тока, по путевым рельсам течет и слабый «сигнальный» ток, необходимый для работы блокировки и автоматического переключения светофоров. Также по рельсам передается информация в кабину машиниста о сигналах светофоров и разрешенной скорости движения поезда метро на данном участке.

Электровозом называют локомотив, движимый тяговым электродвигателем. Двигатель электровоза получает питание от тяговой подстанции через контактную сеть.

Электрическая часть электровоза в целом содержит не только тяговые двигатели, но и преобразователи напряжения, а также аппараты, подключающие к сети двигатели и прочее. Токоведущее оборудование электровоза находится на его крыше или капотах, и предназначено для соединения электрооборудования с контактной сетью.

Токосъем с контактной сети обеспечивают токоприемники на крыше, далее ток подается через шины и проходные изоляторы — к электрическим аппаратам. На крыше электровоза присутствуют и коммутирующие аппараты: воздушные выключатели, переключатели родов тока и разъединители для отключения от сети в случае неполадки токоприемника. Через шины ток подается на главный ввод, к преобразующим и регулирующим аппаратам, на тяговые двигатели и другие машины, далее — на колесные пары и через них — на рельсы, в землю.

Регулировка тягового усилия и скорости движения электровоза достигается изменением напряжения на якоре двигателя и варьированием коэффициента возбуждения на коллекторных двигателях, или подстройкой частоты и напряжения питающего тока на асинхронных двигателях.

Регулирование напряжения выполняется несколькими способами. Изначально на электровозе постоянного тока все его двигатели соединены последовательно, и напряжение на одном двигателе восьмиосного электровоза составляет 375 В, при напряжении в контактной сети 3 кВ.

Группы тяговых двигателей могут быть переключены с последовательного соединения — на последовательно-параллельное (2 группы по 4 двигателя, соединённых последовательно, тогда напряжение на каждый двигатель — 750 В), либо на параллельное (4 группы по 2 последовательно соединенных двигателя, тогда напряжение на один двигатель — 1500 В). А для получения промежуточных значений напряжений на двигателях, в цепь добавляются группы реостатов, что позволяет регулировать напряжение ступенями по 40—60 В, хотя это и приводит к потере части электроэнергии на реостатах в виде тепла.

Преобразователи электроэнергии внутри электровоза необходимы для изменения рода тока и понижения напряжения контактной сети до необходимых величин, соответствующих требованиям тяговых электродвигателей, вспомогательных машин и прочих цепей электровоза. Преобразование осуществляется прямо на борту.

 

На электровозах переменного тока для понижения входного высокого напряжения предусмотрен тяговый трансформатор, а также выпрямитель и сглаживающие реакторы для получения постоянного тока из переменного. Для питания вспомогательных машин могут устанавливаться статические преобразователи напряжения и тока. На электровозах с асинхронным приводом обоих родов тока применяются тяговые инверторы, которые преобразуют постоянный ток в переменный ток регулируемого напряжения и частоты, подаваемый на тяговые двигатели.

Электропоезд

Электропоезд или электричка в классическом виде берет электричество с помощью токоприемников через контактный провод или контактный рельс. В отличие от электровоза, токоприемники электрички располагаются как на моторных вагонах, так и на прицепных.

Если ток подается на прицепные вагоны, то моторный вагон получает питание через специальные кабели. Токосъем обычно верхний, с контактного провода, осуществляется он токосъемниками в форме пантографов (похожих на трамвайные).

Обычно токосъем однофазный, но существует и трёхфазный, когда электропоезд использует токоприёмники специальной конструкции для раздельного контакта с несколькими проводами или контактными рельсами (если речь идет о метро).

Электрооборудование электрички зависит от рода тока (бывают электропоезда постоянного тока, переменного тока или двухсистемные), типа тяговых двигателей (коллекторные или асинхронные), наличия или отсутствия электрического торможения.

В основном электрическое оборудование электропоездов схоже с электрооборудованием электровозов. Однако на большинстве моделей электропоездов оно размещено под кузовом и на крышах вагонов для увеличения пассажирского пространства внутри. Принципы управления двигателями электропоездов примерно те же, что и на электровозах.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

II.Электроснабжение троллейбуса

1. Схема электроснабжения троллейбуса.

1. Электрическая станция. 6. Тяговая подстанция

2. Понижающая трансформаторная 7. Питающие кабельные линии.

подстанция. 8. Контактный провод трамвая.

3. Линия электропередачи. 9. Рельсы.

4. Понижающая подстанция. 10. Контактные провода

5. Кабельная линия 6 или 10 кВ. троллейбуса.

Электрическая энергия для всех потребителей (промышленности, населения города, трамвая, троллейбуса и др.) вырабатывается на электрической станции 1 в виде переменного трехфазного тока с частотой 50 Гц.

Выработанная энергия передается чаще всего на значительное расстояние от электростанции к потребителям по линии электропередачи 3 (ЛЭП). Для уменьшения потерь энергии в ЛЭП напряжение повышается на трансформаторной подстанции 2 до уровня 35; 110; 220 кВ и более в зависимости от удаленности потребителей. Вблизи от места потребления на понижающей подстанции 4 уровень напряжения снижается до 6 и 10 кВ. Отсюда электроэнергия направляется потребителям. Питание тяговых подстанций 6 городского электротранспорта осуществляется по кабельным (в редких случаях воздушным) трехфазным линиям 5.

На тяговой подстанции:

1.Напряжение понижается до 600В,

2.Переменный ток преобразуется в постоянный.

От (+) шины тяговой подстанции по питающему кабелю электрический ток идет на (+) контактный провод, затем через токоприемник – на реостат, тяговый электродвигатель троллейбуса и через второй токоприемник – на (-) контактный провод. Через отсасывающий кабель – на (-) шину тяговой подстанции.

Напряжение на шинах постоянного тока может изменяться в диапазоне 600-700В – рабочем режиме и до 780В – в режиме холостого хода.

С учетом потерь в кабелях напряжение на токоприемниках троллейбуса принято считать равным 550В.

В Новосибирске контактную сеть трамвая и троллейбуса запитывают 34 тяговые подстанции: 13 – на левом берегу, 21 – на правом берегу.

Общая мощность тяговых подстанций – 70 МВт.

Длина троллейбусных линий – 277км.

Длина трамвайных путей – 134км.

Длина кабелей 600В – 220км.

2.Устройство контактной сети.

Контактная сеть включает:

1. Контактные провода ( + ) и ( — );

3. Тросовую систему;

3.Взаимодействие токоприемника и контактной подвески.

Передача электрической энергии от контактного провода троллейбуса называется токосъемом. Для надежного токосъема необходимо, чтобы давление в точке контакта не уменьшалось ниже допустимого – (12 – 14кг) на высоте подвески контактного провода 5,5м.

При малом давлении:

1. Возрастает электрическое сопротивление в контакте, нагрев контактного провода, дугообразование, что вызывает электрический и термический износ контактного провода.

2. Возможен сход токоприемников с контактных проводов.

При большом давлении – происходит усиленный износ контактного провода.

Кроме того, высота подвески контактного провода меняется из-за его провисания и деформации под действием сильного давления токоприемника на контактный провод.

Конструкция токоприемников выполнена так, что давление их на контактный провод мало зависит от высоты, то есть от траектории движения токоприемника.

При низких скоростях практически так и происходит, поэтому под мостами скорость должна быть не более 15км/ч. Но на больших скоростях увеличивается ускорение и сила инерции массы токоприемников, то есть давление увеличивается, особенно, если траектория движения токоприемников снижается (контактный провод провисает).

Для получения удовлетворительного токосъема необходимо:

1. постоянное натяжение контактных проводов по всей длине, без

2. отсутствие сосредоточенных жестких точек;

3. горизонтальное расположение контактного провода.

4.Контактные провода.

Контактный провод служит для передачи энергии троллейбусу через непосредственный контакт с токоприемником. К контактному проводу предъявляются требования:

1) должен быть механически прочным

4) хорошо проводить ток (высокая электропроводность).

5) стойкость к воздействию электрической дуги.

6) большой срок службы.

Применяются следующие марки проводов:

1. МФ85 — медные фасонные сечением 85 мм² и 100мм².

2. СМ-100, СМ-85 — провод сталемедный сечением 85мм² и 100мм²

3. ПКСА 85 — провод сталеалюминевый сечением 85мм²

(Н) высота подвески контактного провода по правилам эксплуатации должна быть на маршрутах не менее Н=5,8м.

В проеме ворот в депо Н=4,7м

Под мостами, путепроводами, в тоннеле Н=4,2м.

Расстояние между разнополярными проводами допускается в пределах 500-700мм.

1. КП контактный провод

2. жесткие подвески

3. изоляторы из дельта-древесины

4. пряжковый изолятор

5.Системы подвески:

Простая подвеска.

2. поперечный трос (диаметром d=8мм оцинкованный трос).

3. контактный провод.

Подвеска имеет простую конструкцию. Контактный провод подвешивается к поперечному тросу при помощи подвесных зажимов, расстояние между точками подвеса такое же, как и между опорами.

Недостаток – большое провисание контактного провода.

Как устроена трамвайная и троллейбусная сеть?

Почему у троллейбуса 2 провода, а у трамвая 1 я знаю. Но у трамвая в рельсах ток тут же заземляется и не идёт дальше, а у троллейбуса он уходит в другой провод (в ноль) и что с этим током происходит дальше, куда он девается и где заземляется.
И ещё один вопрос, обязательно ли стоит хвататься сразу за 2 провода. чтобы долбонуло током?) ) Просто я часто видел, что водители ставят штанги без перчаток, ставят ли они зная, что ничего не будет, либо на свой страх и риск.

И у трамваю и у троллейбусу нужны два провода. Но трамвай двигается по стальным рельсам и их используют в качестве второго провода, если посмотрите на трамвайные рельсы к ним приварены стыковые соединители по ним и рельсам течет ток. Рельсы заземляют, что бы если вы наступите на них Вас не убило. А раз рельсы на земле, то и часть тока по этой земле растекается.


Троллейбус движется по асфальту и вдобавок «на резиновом ходу», и поэтому использовать землю в качестве проводника сложно, но по условиям электробезопасности один провод заземляют, а в троллейбусе соединяют на корпус. Не сделай этого, при неисправной изоляции проводов при выходе из троллейбуса от пассажира могут остаться одни обгорелые штаны. Но а почему так вольно водитель обращается со штангами — они изолировны.

У трамвая второй провод это рельсы. Если схватиться за один провод, и при этом не до чего не дотрагиваться (висеть на проводе, или держаться за предмет из хорошей изоляции) , то никакой ток через тело не пройдет. В троллеьбусе от штанги идут веревки, которые имеют некоторую изоляцию, хотя дождь и влага могут нарушить изоляцию, поэтому нужно одевать резиновые перчатки. Может в сухую погоду водитель пренебрегает безопасностью.

Куда девается? На тяговую подстанцию

Одинаково. Оба провода идут на подстанцию и образуют замкнутую цепь. Чтобы ток мог течь по цепи, она должна быть замкнута в кольцо — тебе об этом в школе говорили, я уверен. Трамваи используют рельсы, потому что это бесплатно — рельсы-то уже лежат! Чего бы их не использовать! Подстанция ТОЖЕ к ним подключена, тут даже заземление не требуется. А троллейбус не имеет такой привилегии, он катится на диэлектрических колесах по диэлектрическому асфальту — поэтому приходится ему ОБА провода по воздуху прокладывать. И точно также, ОБА провода подключены к подстанции, где цепь и замыкается. Через обмотку трансформатора.

По первому пункту ответю: Цепь что при трамваё что при троллейбусе собирается ОДНА И ТА ЖЕ. Просто у троллейбуса плюс и минус контактной сети ПОЛНОСТЬЮ ИЗОЛИРОВАН от земли, а у трамвая рельсы соединены еще с землёй. Это сделано для того, чтобы если пробьёт напруга на корпус трамвая, чтобы пассажиров не ударило током (как в случае с троллейбусами) .

По второму пункту ответю: Да, постоянка ударит током только если хватануться за плюс и минус одновременно. Но это лишь в том случае, если линия изолирована от земли и токоутечки на землю мизерные. Если же минус заземлен (как у трамвая) , то при обрыве контактной сети, если прикоснуться к оборванному контактному проводу, естесс-но стукнет током. Так как цепь собирается так: тяговая подстанция — контактный провод — человек — земля — минус — тяговая подстанция. В случае же изолированной линии этого не произойдет. Или же слегонца трусанет через разные токоутечки на подстанции или еще где-нить. Не зря тралики бьются током. Не сильно конечно, но налиЦО. Кстати вставлю свои 5 коп. в оный вопрос про преимущество ИЗОЛИРОВАННЫХ от земли СЕТЕЙ: Вот, например взять ламповые приёмники. Там напряжение на анодах ламп около 250 — 300 вольт относительно шасси. Шасси соединено с минусом источника питания. Так вот если взяться только за шасси или только за плюсовую клемму 250 вольт — ничего не будет. Но если же взяться одновременно за шасси приёмника и за плюсовую клемму 250 вольт — то. Ха-ха-ха.

Контактная сеть троллейбусной системы

В отличие от организации автобусного сообщения использование троллейбусов для перевозки пассажиров имеет свои существенные отличия. Так как для движения троллейбуса необходим внешний источник тока, неотъемлемым атрибутом троллейбусной системы является специальный элемент для передачи электроэнергии — контактная сеть. Схематически схему электропитания троллейбусной системы можно представить следующим образом.

Контактная сеть представляет собой два медных провода, подвешенных по всей протяженности маршрута движения, на высоте номинального положения токоприемников троллейбуса (обычно 4 – 6 метров). Провода изолированы между собой, а также от системы тросов и растяжек крепления. Расстояние между проводами равно расстоянию между токоприемниками троллейбуса. Тяговая подстанция является источником постоянного тока напряжением 550 В. Далее напряжение на контактные провода поступает через специальные кабеля (фидера), (плюсовой и минусовой). Они проложены под землей и соединяются с контактными проводами через определенные промежутки. Такое подсоединение обусловлено необходимостью снижения падения напряжения, поскольку ток, потребляемый троллейбусом в режиме движения достаточно велик (достигает 400 ампер). К примеру, при сопротивлении 0,5 Ом от тяговой подстанции до места нахождения троллейбуса напряжение будет равно 350 В. Поэтому к проводимости подводящих проводов и надежности электрических соединений предъявляются довольно жесткие требования.

Система подвески контактной сети должна обеспечивать свободное скольжение головки токоприемника по контактному проводу при допустимом отклонении троллейбуса от оси контактных проводов в любую сторону.

Одним из способов является использование специального зажима (4). Он состоит из двух щечек – основной (3) и прижимной (1), которые стягиваются винтами (2). Грани щечек имеют специальную форму, соответствующую профилю контактного провода (5). Такая конструкция обеспечивает надежную фиксацию контактного провода в зажиме и не препятствует свободному скольжению головки токоприемника троллейбуса.

Подвеска контактной сети осуществляется различными по конструкции подвесами Они обеспечивают надежное крепление и изоляцию проводов как между собой, так и с натяжными тросами.

1) подвес неизолированный двуплечий (ПНД); 2) место закрепления контактного провода; 3) изолятор из дельта-древесины; 4) пряжечный изолятор

Контактная сеть делится на отдельные участки с помощью секционных изоляторов, имеющих воздушный промежуток. При прохождении токоприемника через этот изолятор возникает электрическая дуга, которая способна перекрыть воздушный промежуток между двумя изолированными участками и тем самым полностью разрушить изолятор. Поэтому в контактной сети троллейбуса применяется устройство для «гашения” электрической дуги — секционный изолятор.

К специальным частям контактной сети относятся кривые держатели, стрелки, крестовины и пересечения троллейбусных линий как друг с другом, так и с линиями трамвая. Чтобы не создавать в местах поворота контактной сети сложной системы подвеса, которая ухудшит условия токосъема, и для создания на контактных проводах плавной кривой поворота устанавливают кривые держатели .Они помогают головке токоприемника пройти участок кривой и могут изменять направление контактного провода до 45°.

Кривой держатель типа КД-5.

Для перевода токоприемника на одну линию контактной сети в местах слияния двух трасс устанавливают сходные стрелки . Они просты по конструкции. Контактные провода сходящихся трасс оканчиваются на плите стрелки направляющими. При входе с любой трассы на стрелку головка токоприемника скользит обоймой вдоль специальных направляющих, установленных на плите стрелки, которые выводят головку токоприемника на новое направление трассы, уходящей со сходной стрелки.

Конструктивные элементы сходных стрелок выполнены с постепенно меняющейся высотой, благодаря чему головка токоприемника плавно переходит со скольжения угольной вставкой по контактному проводу на скольжение обоймами головки по направляющим плиты стрелки.
При необходимости перевода токоприемника с одной линии на ветвь разветвляемой трассы устанавливают расходные (управляемые) стрелки. Конструкция расходных стрелок значительно сложнее сходных. Механизм привода этих стрелок должен направлять движение головки токоприемника в одно из двухнаправлений. В троллейбусных системах стран бывшего СССР применяется управление по току с движением налево под нагрузкой.

Перевод направления движения головки токоприемника осуществляется пером (4), которое может занимать одно из двух фиксированных положений. Подвижное перо (4) стрелки постоянно удерживается пружиной (не указана) в положении для движения троллейбуса направо. Механизм включения перевода стрелки состоит из электромагнита (3), связанного рычагом с подвижным пером (4). При нахождении головки токоприемника (2) на участке контактного провода (1), ток , потребляемый троллейбусом, проходит через катушку электромагнита (3). Если его величина превышает 10– 15 А (ток, идущий на вспомогательные цепи троллейбуса), т.е троллейбус движется с включенным силовым приводом, электромагнит срабатывает и переводит перо в положение, разрешающее движение башмака токоприемника в левом направлении. После проезда стрелки ток через катушку электромагнита прекращается и под действием возвратной пружины перо возвращается в исходное положение. Для увеличения надежности срабатывания механизма перевода стрелки в троллейбусе могут быть предусмотрены переключатели режима проезда. Выключатель проезда стрелки вправо для уменьшения потребления тока отключает отопители и двигатель компрессора. Выключатель проезда влево для увеличения тока подключает в силовом электроприводе дополнительную нагрузку, не влияющую на скорость троллейбуса.

В заключение можно отметить, что идея использования отдельных участков контактной сети, подключенных через токовое реле, может быть применена для автоматизации некоторых процессов. К примеру, в троллейбусном депо г.Гродно установлены и успешно эксплуатируются системы автоматического открытия и закрытия ворот депо, управляемые троллейбусом.

Контактная сеть троллейбусной системы

В отличие от организации автобусного сообщения использование троллейбусов для перевозки пассажиров имеет свои существенные отличия. Так как для движения троллейбуса необходим внешний источник тока, неотъемлемым атрибутом троллейбусной системы является специальный элемент для передачи электроэнергии — контактная сеть. Схематически схему электропитания троллейбусной системы можно представить следующим образом.

Контактная сеть представляет собой два медных провода, подвешенных по всей протяженности маршрута движения, на высоте номинального положения токоприемников троллейбуса (обычно 4 – 6 метров). Провода изолированы между собой, а также от системы тросов и растяжек крепления. Расстояние между проводами равно расстоянию между токоприемниками троллейбуса. Тяговая подстанция является источником постоянного тока напряжением 550 В. Далее напряжение на контактные провода поступает через специальные кабеля (фидера), (плюсовой и минусовой). Они проложены под землей и соединяются с контактными проводами через определенные промежутки. Такое подсоединение обусловлено необходимостью снижения падения напряжения, поскольку ток, потребляемый троллейбусом в режиме движения достаточно велик (достигает 400 ампер). К примеру, при сопротивлении 0,5 Ом от тяговой подстанции до места нахождения троллейбуса напряжение будет равно 350 В. Поэтому к проводимости подводящих проводов и надежности электрических соединений предъявляются довольно жесткие требования.

Система подвески контактной сети должна обеспечивать свободное скольжение головки токоприемника по контактному проводу при допустимом отклонении троллейбуса от оси контактных проводов в любую сторону.

Контактная сеть троллейбусной системы

Одним из способов является использование специального зажима (4). Он состоит из двух щечек – основной (3) и прижимной (1), которые стягиваются винтами (2). Грани щечек имеют специальную форму, соответствующую профилю контактного провода (5). Такая конструкция обеспечивает надежную фиксацию контактного провода в зажиме и не препятствует свободному скольжению головки токоприемника троллейбуса.

Подвеска контактной сети осуществляется различными по конструкции подвесами Они обеспечивают надежное крепление и изоляцию проводов как между собой, так и с натяжными тросами.

1) подвес неизолированный двуплечий (ПНД); 2) место закрепления контактного провода; 3) изолятор из дельта-древесины; 4) пряжечный изолятор

Контактная сеть делится на отдельные участки с помощью секционных изоляторов, имеющих воздушный промежуток. При прохождении токоприемника через этот изолятор возникает электрическая дуга, которая способна перекрыть воздушный промежуток между двумя изолированными участками и тем самым полностью разрушить изолятор. Поэтому в контактной сети троллейбуса применяется устройство для «гашения” электрической дуги — секционный изолятор.

Контактная сеть троллейбусной системы

К специальным частям контактной сети относятся кривые держатели, стрелки, крестовины и пересечения троллейбусных линий как друг с другом, так и с линиями трамвая. Чтобы не создавать в местах поворота контактной сети сложной системы подвеса, которая ухудшит условия токосъема, и для создания на контактных проводах плавной кривой поворота устанавливают кривые держатели .Они помогают головке токоприемника пройти участок кривой и могут изменять направление контактного провода до 45°.

Контактная сеть троллейбусной системы

Кривой держатель типа КД-5.

Для перевода токоприемника на одну линию контактной сети в местах слияния двух трасс устанавливают сходные стрелки . Они просты по конструкции. Контактные провода сходящихся трасс оканчиваются на плите стрелки направляющими. При входе с любой трассы на стрелку головка токоприемника скользит обоймой вдоль специальных направляющих, установленных на плите стрелки, которые выводят головку токоприемника на новое направление трассы, уходящей со сходной стрелки.

Контактная сеть троллейбусной системы

Конструктивные элементы сходных стрелок выполнены с постепенно меняющейся высотой, благодаря чему головка токоприемника плавно переходит со скольжения угольной вставкой по контактному проводу на скольжение обоймами головки по направляющим плиты стрелки.
При необходимости перевода токоприемника с одной линии на ветвь разветвляемой трассы устанавливают расходные (управляемые) стрелки. Конструкция расходных стрелок значительно сложнее сходных. Механизм привода этих стрелок должен направлять движение головки токоприемника в одно из двухнаправлений. В троллейбусных системах стран бывшего СССР применяется управление по току с движением налево под нагрузкой.

Контактная сеть троллейбусной системы

Перевод направления движения головки токоприемника осуществляется пером (4), которое может занимать одно из двух фиксированных положений. Подвижное перо (4) стрелки постоянно удерживается пружиной (не указана) в положении для движения троллейбуса направо. Механизм включения перевода стрелки состоит из электромагнита (3), связанного рычагом с подвижным пером (4). При нахождении головки токоприемника (2) на участке контактного провода (1), ток , потребляемый троллейбусом, проходит через катушку электромагнита (3). Если его величина превышает 10– 15 А (ток, идущий на вспомогательные цепи троллейбуса), т.е троллейбус движется с включенным силовым приводом, электромагнит срабатывает и переводит перо в положение, разрешающее движение башмака токоприемника в левом направлении. После проезда стрелки ток через катушку электромагнита прекращается и под действием возвратной пружины перо возвращается в исходное положение. Для увеличения надежности срабатывания механизма перевода стрелки в троллейбусе могут быть предусмотрены переключатели режима проезда. Выключатель проезда стрелки вправо для уменьшения потребления тока отключает отопители и двигатель компрессора. Выключатель проезда влево для увеличения тока подключает в силовом электроприводе дополнительную нагрузку, не влияющую на скорость троллейбуса.

В заключение можно отметить, что идея использования отдельных участков контактной сети, подключенных через токовое реле, может быть применена для автоматизации некоторых процессов. К примеру, в троллейбусном депо г.Гродно установлены и успешно эксплуатируются системы автоматического открытия и закрытия ворот депо, управляемые троллейбусом.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *