Тепловое действие электрического тока. Закон Джоуля-Ленца
Мы уже знаем, что при прохождении тока через электрическую лампочку её спираль нагревается и излучает видимый свет. Таким образом, мы наблюдаем тепловое действие электрического тока. Благодаря этому действию, нагреваются, например, утюг или чайник. Но при работе вентилятора или пылесоса практически не наблюдается тепловое действие, также в нормальном состоянии слабо греются провода. На этом уроке, тема которого: «Нагревание проводников электрическим током. Закон Джоуля – Ленца», мы определим, от чего зависит тепловое действие электрического тока.
Свойства электрического тока
Когда электрический ток проходит через металлический проводник, его электроны постоянно сталкиваются с различными посторонними частицами. Это могут быть обычные нейтральные молекулы или молекулы, потерявшие электроны. Электрон в процессе движения может отщепить от нейтральной молекулы еще один электрон. В результате, его кинетическая энергия теряется, а вместо молекулы происходит образование положительного иона. В других случаях электрон, наоборот, соединиться с положительным ионом и образовать нейтральную молекулу.
В процессе столкновений электронов и молекул происходит расход энергии, в дальнейшем превращающейся в тепло. Затраты определенного количества энергии связаны со всеми движениями, во время которых приходится преодолевать сопротивление. В это время происходит превращение работы, затраченной на преодоление сопротивления трения, в тепловую энергию.
Сопротивление в электрических проводниках обладает теми же качествами, как и у обычного сопротивления. Для того чтобы провести ток через проводник, источником тока затрачивается определенное количество энергии, превращающейся в тепло. Данное превращение как раз и отражает закон Джоуля – Ленца, известного также, как закон теплового действия тока.
Опыты, демонстрирующие зависимость количества теплоты от силы тока и сопротивления
Факт нагрева проводника при протекании по нему тока объясняется тем, что во время движения заряженных частиц под действием электрического поля они сталкиваются с частицами проводника, в результате часть энергии передаётся этим частицам проводника, то есть средняя скорость хаотического (теплового) движения частиц проводника увеличивается, и проводник нагревается. По закону сохранения энергии кинетическая энергия свободных заряженных частиц, приобретённая под действием электрического поля, превратится во внутреннюю энергию проводника. Следовательно, можно предположить:
1. чем больше сопротивление проводника, тем больше тепла выделяется при прохождении электрического тока по проводнику, то есть количество теплоты, которое выделяется в проводнике при прохождении по нему электрического тока, прямо пропорционально сопротивлению проводника;
2. количество теплоты, выделяемое в проводнике при прохождении по нему электрического тока, зависит от силы тока (чем больше сила тока, тем большее количество свободных частиц проходит через сечение проводника в единицу времени, происходит больше столкновений, следовательно, больше энергии передаётся частицам проводника). Можно подтвердить данные предположения с помощью опытов.
Соберём электрическую цепь, в которой последовательно с источником тока подключены два нагревателя с разными сопротивлениями, которые опущены в калориметры (прибор для измерения количества теплоты) с одинаковым количеством воды при одинаковой температуре. При прохождении электрического тока через нагреватели будет наблюдаться повышение температуры воды, причём вода будет нагреваться быстрее в том калориметре, в который помещён нагреватель с бльшим сопротивлением (см. Рис. 1). То есть подтверждается предположение 1.
Для подтверждения предположения 2 соберём электрическую цепь, в которой последовательно к источнику тока подключен амперметр, лампочка накаливания и реостат. Регулируя сопротивление реостата, меняем силу тока в цепи при постоянном напряжении. При увеличении силы тока увеличивается яркость лампочки (см. Рис. 2), то есть увеличивается количество теплоты, которое выделяет нить накаливания.
Рис. 1. Нагреватель с бльшим сопротивлением нагревает воду быстрее
Рис. 2. Увеличение яркости лампочки при увеличении силы тока
Квартирные предохранители
Чтобы улучшить защиту и обезопасить электрические цепи, используются особые предохранители. В роли главной части выступает проволока из легкоплавкого металла. Она проходит в пробке из фарфора, имеет винтовую нарезку и контакт в центре. Пробку вставляют в патрон, расположенный в фарфоровой коробке.
Свинцовая проволока является частью общей цепи. Если тепловое действие электрического тока резко возрастет, сечение проводника не выдержит, и он начнет плавиться. В результате этого сеть разомкнется, и не случится токовых перегрузок.
Закон Джоуля-Ленца
Тепловое действие тока опытным путём независимо друг от друга изучали английский учёный Джоуль и русский учёный Ленц. Они пришли к выводу, который впоследствии назвали закон Джоуля – Ленца: количество теплоты, выделяющееся при прохождении тока в проводнике, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока:
где – количество теплоты, I – сила тока, R – сопротивление проводника, t – время прохождения тока.
Закон Джоуля – Ленца был получен экспериментально, но так как мы знаем формулу для работы электрического тока (), то сможем вывести его с помощью несложных математических вычислений. Если на участке цепи, в котором течёт электрический ток, не выполняется механическая работа и не происходят химические реакции, то результатом работы электрического тока будет нагревание проводника. В результате этого нагревания проводник будет отдавать тепло окружающим телам. Следовательно, в данном случае, согласно закону сохранения энергии, количество выделенной теплоты () будет равно работе тока (A). Зная формулу для работы тока и напряжения, получим следующие преобразования:
Если сила тока неизвестна, а известно напряжение на концах участка цепи, то, воспользовавшись законом Ома, получаем:
Формулы и можно использовать только тогда, когда вся работа электрического тока расходуется только на нагревание. Если на участке цепи есть потребители энергии, в которых выполняется механическая работа или происходят химические реакции, эти формулы использовать нельзя (в таких случаях применяются сложные математические расчёты).
Определение и формула
Тепловой закон можно сформулировать и записать в следующей редакции: «Количество тепла, выработанного током, прямо пропорционально квадрату приложенного к данному участку цепи тока, сопротивления проводника и промежутка времени, в течение которого электричество действовало на проводник».
Обозначим символом Q количество выделяемого тепла, а символами I, R и Δt – силу тока, сопротивление и промежуток времени, соответственно. Тогда формула закона Джоуля-Ленца будет иметь вид: Q = I2*R*Δt
Согласно законам Ома I=U/R, откуда R = U/I. Подставляя выражения в формулу Джоуля-Ленца получим: Q = U2/R * Δt ⇒ Q = U*I*Δt.
Выведенные нами формулы – различные формы записи закона Джоуля-Ленца. Зная такие параметры как напряжение или силу тока, можно легко рассчитать количество тепла, выделяемого на участке цепи, обладающем сопротивлением R.
Дифференциальная форма
Чтобы перейти к дифференциальной форме закона, проанализируем утверждение Джоуля-Ленца применительно к электронной теории. Приращение энергии электрона ΔW за счёт работы электрических сил поля равно разности энергий электрона в конце пробега (m/2)*(u=υmax)2 и в начале пробега (mu2)/2 , то есть
Здесь u – скорость хаотического движение (векторная величина), а υmax – максимальная скорость электрического заряда в данный момент времени.
Поскольку установлено, что скорость хаотического движения с одинаковой вероятностью совпадает с максимальной (по направлению и в противоположном направлении), то выражение 2*u*υmax в среднем равно нулю. Тогда полная энергия, выделяющаяся при столкновениях электронов с атомами, образующими узлы кристаллической решётки, составляет:
Это и есть закон Джоуля-Ленца, записанный в дифференциальной форме. Здесь γ – согласующий коэффициент, E – напряжённость поля.
Интегральная форма
Предположим, что проводник имеет цилиндрическую форму с сечением S. Пусть длина этого проводника составляет l. Тогда мощность P, выделяемая в объёме V= lS составляет:
гдеR – полное сопротивление проводника.
Учитывая, чтоU = I×R, из последней формулы имеем:
- P = U×I;
- P = I2R;
- P = U2/R.
Если величина тока со временем меняется, то количество теплоты вычисляется по формуле:
Данное выражение, а также вышеперечисленные формулы, которые можно переписать в таком же виде, принято называть интегральной формой закона Джоуля-Ленца.
Формулы очень удобны при вычислении мощности тока в нагревательных элементах. Если известно сопротивление такого элемента, то зная напряжение бытовой сети легко определить мощность прибора, например, электрочайника или паяльника.
Задача из ЕГЭ
По проводнику сопротивлением R течёт ток I. Как изменится количество теплоты, выделяющееся в проводнике в единицу времени, если его сопротивление увеличить в два раза, а силу тока уменьшить в два раза? Варианты ответа: а) увеличится в два раза; б) уменьшится в два раза; в) не изменится; г) уменьшится в восемь раз.
Решение
Воспользуемся законом Джоуля – Ленца:
Количество теплоты, выделяющееся в проводнике в единицу времени, равно:
Так как сопротивление увеличивается в два раза, а сила тока уменьшается в два раза:
Следовательно, новое значение количества теплоты будет равно:
Ответ: б) уменьшится в два раза
Общие сведения
В 1941 году английским физиком Джеймсом Джоулем и, независимо от него, в 1942 году русским ученым Эмилием Ленцем было открыто уравнение Джоуля-Ленца. Оно позволяет рассчитать по формуле количество теплоты в электрической цепи, выделяемое при прохождении электротока через проводник. Значение количества теплоты, выделяемое проводником при протекании тока через него, зависит от напряжения, времени, силы тока и сопротивления проводника. Открытие позволило точно рассчитывать схемы различных устройств при их проектировании.
Прежде чем сформулировать закон Джоуля-Ленца, следует рассмотреть и понять физический смысл основных и производных величин, от которых зависит, какое количество теплоты выделяет проводник при прохождении через него электротока.
Разность потенциалов
Научно доказано, что каждое вещество состоит из атомов, которые также состоят из элементарных или субатомных частиц. К ним относятся следующие: электроны, протоны и нейтроны. Атом в исходном состоянии имеет нейтральный заряд, поскольку количество протонов и электронов равны и, следовательно, справедливо равенство положительного и отрицательного зарядов, и они компенсируют друг друга.
Однако возникают случаи «захвата» атомом электрона другого атома. Если атом захватывает электрон, то он называется отрицательным ионом, а при потере преобразовывается в положительный. В результате потери или притяжения субатомной отрицательно заряженной частицы образуется электромагнитное поле, составляющая которого зависит от заряда иона.
Разность между положительной и отрицательной составляющими является напряжением, единицей измерения которого является вольт (обозначение: В или V). Чем больше разница, тем больше напряжение. В некоторых источниках его еще называют разностью потенциалов, величину которой можно измерять при помощи вольтметра или рассчитать, используя формулы. При соединении потенциалов с противоположными знаками образуется электрический ток, который представляет упорядоченное движение заряженных частиц, под действием силы электромагнитного поля имеет векторное направление.
В научной литературе можно встретить такое определение: электрическим напряжением является работа, которая выполняется при перемещении точечного заряда. Таким образом, 1 В — это напряжение между двумя точечными положительным и отрицательным зарядами, равными 1 Кл, на перемещение которых тратится энергия электромагнитного поля 1 Дж. Вспомогательными единицами измерения являются следующие: 1 кВ = 1000 В, 1 МВ = 10 6 В, 1 мВ = 10^(-3) и т. д.
Вам это будет интересно Устройство термопары, ее виды и принцип работы
Сила тока
Сила тока (I) — величина, равная количеству заряженных частиц, которые проходят через проводник за единицу времени. Единица измерения — ампер (А), а с помощью амперметра можно измерять ее значение. Прибор подключается последовательно с потребителем в электрическую цепь. Если через площадь поперечного сечения проводника за 1 секунду проходит количество заряда, равное 1 Кл, то эта величина является силой тока в 1 А.
Математическая запись нахождения силы тока имеет вид: I = Qz / t, где Qz — значение заряда, а t — единица времени. Кроме того, существуют и дополнительные единицы измерения: 1 mА = 10^(-3) A, 1 кА = 1000 А и т. д. Электрический ток бывает следующих видов:
- Переменным.
- Постоянным.
Переменный ток подчиняется определенному закону, который характеризует изменение амплитуды и направления протекания. Основной характеристикой является частота, согласно которой происходит разделение на синусоидальный и несинусоидальный токи. Графиком синусоидального типа тока является синусоида, формула которой зависит от максимальной амплитуды Imax и угловой частоты w. Она имеет следующий вид: i = Imax * sin (w * t).
Для расчета значения угловой частоты необходимо значение частоты тока в сети (f), которое подставляется в формулу: w = 6,2832 * f. Постоянный ток не изменяет направление своего движения по проводнику, однако его значение может меняться.
Электрическое сопротивление
Вещества по проводимости электричества можно классифицировать на проводники, полупроводники и диэлектрики. К первому типу относятся все вещества, которые хорошо проводят ток. Эта особенность обуславливается наличием свободных носителей заряда, информацию о которых можно получить из электронной конфигурации элементов периодической системы Д. И. Менделеева.
К проводникам относят следующие вещества: металлы, электролиты и ионизированный газ. В металлах электроны являются носителями заряда. В жидкостях (электролитах) носителями заряда являются анионы и катионы: первые обладают положительным зарядом, а вторые — отрицательным. При электролизе анионы притягиваются электродом, который является отрицательно заряженным (катодом), а на катионы действует положительный заряд анода. Функцию носителей заряда в газах выполняют отрицательно заряженные электроны и ионы.
При повышении температуры проводника происходит взаимодействие атомов между собой, в результате которого разрушается кристаллическая решетка и появляются свободные носители заряда. При протекании тока происходит взаимодействие с узлами решетки и с электронами проводника, при котором движение упорядоченных заряженных частиц замедляется и выделяется тепловая энергия, а затем снова скорость их движения возвращается в исходное состояние, благодаря воздействию электромагнитного поля. Это физическое свойство называется электрическим сопротивлением проводника, при нагревании которого его величина возрастает.
Вам это будет интересно Подключение клеммной испытательной переходной колодки (ИКК)
Полупроводники — вещества, проводящие ток только при определенных условиях. Функцию носителей заряда выполняют электроны и дырки. При каком-либо воздействии внешней энергии (например, тепловой) происходит уменьшение силы притяжения между ядром и электронами, при котором некоторые из них «вырываются» и становятся свободным, а на их месте образуются дырки.
Происходит образование электромагнитного поля положительной составляющей и к ней притягивается соседняя субатомная частица с отрицательным зарядом. Этот процесс повторяется и приводит к движению дырок. Сопротивление вещества (проводника или полупроводника) зависит от следующих факторов:
- Температурных показателей.
- Типа вещества.
- Длины.
- Площади сечения.
- Значения силы тока и напряжения.
- Вида тока.
Диэлектрики — группа веществ, которые не могут проводить ток, поскольку в них отсутствуют какие-либо носители электрического заряда. Сопротивление или электропроводимость обозначается буквой R и является взаимодействием заряженных частиц, движущихся упорядочено, с узлами кристаллической решетки. Единицей его измерения является Ом.
Характеристика мощности
Мощностью электротока (P) называют количество работы, которое им совершается за единицу времени. Для постоянного и переменного токов мощность вычисляется по разным соотношениям. В цепи постоянного тока значения его силы (I) и напряжения (U) равны мгновенным значениям. Формула мощности записывается в следующем виде: P = U * I. Для цепи, в которой соблюдается закон Ома, формула принимает следующий вид: P = sqr (I) * R = sqr (U) / R.
Для полной цепи формула включает значение электродвижущей силы (e): P = I * e. Если нужно учитывать значение внутреннего сопротивления источника питания (Rвн), то формулу нужно править при условии поглощения (использование в цепи электродвигателя или при зарядке аккумулятора) следующим образом: P = I * e — sqr (I) * Rвн = I * (e — (I * Rвн)).
При наличии в цепи генератора или гальванического элемента (условие отдачи электроэнергии), формула принимает следующий вид: P = I * (e + (I * Rвн)). Однако эту формулу нельзя применять для расчета мощности переменного тока, поскольку он изменяется с течением времени. В цепях переменного тока существует понятие активной, реактивной и полной мощностей:
- Активная определяется с учетом среднеквадратичных значений U и I, а также углом сдвига фаз (a): Pа = I * U * cos (a).
- Реактивная (Qр): Qp = U * I * sin (a).
- Полная (S): S = sqrt (sqr (Pа) + sqr (Qp)).
Значение Qp>0 при наличии в цепи индуктивной нагрузки, а при емкостной — Qp<0. Единицей измерения является ватт (Вт). Сила тока в 1 А при напряжении, равном 1 В, обладает мощностью 1 Вт.
Вам это будет интересно Определение и применение правил рук и буравчика
Плагиат или нет?
Ещё в 1832-1833-х годах Эмилий Христианович Ленц обратил внимание на то, что проводимость проводника сильно зависит от его нагревания, это осложняло расчёты электрических цепей, так как не представлялось возможным вычислить зависимость тока от теплоты, которую он выделяет.
Рис. 3. Опыт Ленца
Ленц сконструировал специальный прибор-сосуд, служивший для измерения количества тепла, выделявшегося в проволоке. В сосуд учёный заливал разбавленный спирт (спирт обладает меньшей электропроводностью, чем вода, которую использовал в своих опытах Джеймс Джоуль). В раствор спирта помещалась платиновая проволока, через которую пропускался электрический ток (см. Рис. 3). Была произведена большая серия опытов, в которых Ленц замерял время, затраченное на нагревание раствора на . Получив достаточное количество убедительных данных, в 1843 году учёный опубликовал закон: «нагревание проволоки гальваническим током пропорционально квадрату служащего для нагревания тока». Однако аналогичный закон уже был опубликован Джоулем в 1841 году, но Ленц вполне обоснованно обратил внимание на то, что англичанин провёл свои эксперименты с большим количеством погрешностей. Именно поэтому закон о тепловом действии тока был назван в честь двух выдающихся учёных.
Законы постоянного тока
«Все, кина не будет. Электричество кончилось». Наверное, никого не оставит равнодушным популярная фраза из широко известного фильма «Джентльмены удачи». Ведь действительно: бесит, когда сидишь за просмотром любимого сериальчика, вдруг — бамс! Вырубили свет, и зарядки ноута, как назло, не хватило. И не выработаешь электричество в домашних условиях, а жаль… Но вот понять, как оно работает — это мы сможем сделать в статье.
Электрический ток
В наше время трудно себе представить жизнь без электричества. Телевизор не посмотреть, телефон не зарядить, чай не попить… Ни один электроприбор в доме не будет работать без электричества. А объявление об отключении электроэнергии, вызывает тихий ужас.
Электричество — это форма энергии, которая существует в виде статических или подвижных электрических зарядов.
Поток. И то и другое представляет собой направленное движение частиц. Из чего состоит вода? Из молекул. Когда эти молекулы движутся в одном направлении, то они образуют поток воды, который течет, например, по трубам.
Электрический ток — это упорядоченное движение заряженных частиц.
Чтобы электрический ток существовал, необходимо выполнение следующих условий:
- наличие свободных заряженных частиц;
- наличие электрического поля;
- наличие замкнутой электрической цепи.
Основными количественными характеристиками электрического тока являются сила тока и напряжение.
Напряжение
Чтобы внутри цепи существовал электрический ток, цепь должна быть замкнута и между концами участка цепи должно существовать напряжение.
Напряжение — скалярная (не имеющая направления) физическая величина, значение которой равно работе тока на участке цепи, совершаемой при переносе единичного электрического заряда из одной точки в другую.
Единица измерения U — В (Вольт) = \(\frac<Дж><Кл>\)
Электрический ток – результат “труда” множества частиц. Они любят работать – не ленятся перемещаться из одного конца цепи в другой. И чем больше они будут работать, тем большее напряжение получится. Так запоминаем связь напряжения (U) с работой (A).
Услышав слова из известной песни Димы Билана «Это ты, это я, между нами молния, С электрическим разрядом 220 Вольт…» любой физик (и электрик) приобретает новую пару седых волосинок. Такое напряжение очень опасно для человека. Однако, 220 Вольт — это то самое напряжение в наших розетках!
Прибор для измерения напряжения — вольтметр. Он включается в цепь параллельно. Пример подключения представлен на рисунке:
Сила тока
Это еще одна немаловажная характеристика электрического тока.
Сила тока — это физическая величина, показывающая, какой заряд переносится через рассматриваемую площадь поперечного сечения за единицу времени .
Единица измерения I — А (ампер) = \(\frac<Кл><с>\).
Представим, что внутри проводника «бежит» в одном направлении огромное количество заряженных частиц. Так вот, чем больше общий заряд частиц, пробегающих через поперечное сечение проводника за единицу времени, тем больше будет значение силы тока. Это поможет вам запомнить зависимость силы тока (I) от электрического заряда (q).
Прибор для измерения силы тока — амперметр. Он включается в цепь последовательно. Пример подключения представлен на рисунке:
Направление тока совпадает с направлением движения положительно заряженных частиц.
Давайте разберемся, как можно определить направление тока в цепи на примере.
Задача. На рисунке изображена электрическая цепь с источником тока и сопротивлением R. Определите направление тока в данной цепи (по часовой стрелке/против часовой стрелки).
Решение:
Обратите внимание, «большая» пластина реостата расположена справа (именно она и направляет ток), а «маленькая» слева. Положительно заряженные частицы двигаются от катода к аноду (от положительно заряженной пластинки к отрицательно заряженной), а направление тока всегда совпадает с направлением положительно заряженных частиц. Значит, ток в цепи направлен по часовой стрелке.
Ответ: по часовой стрелке
Электрическое сопротивление
Оно является электрической характеристикой проводника.
Сопротивление — физическая величина, характеризующая электрические свойства участка цепи.
Единица измерения R — Ом.
Удельное сопротивление проводника (p) можно посмотреть в специальной таблице в справочнике или в интернете. Для каждого материала будет свое значение. Мы приведем для примера лишь фрагмент такой таблицы.
Таблица удельных сопротивлений проводников
Металл | Удельное сопротивление, Ом * \(мм^2\)/ м |
Серебро | 0,0015 |
Медь | 0,018 |
Золото | 0,023 |
Алюминий | 0,029 |
Вольфрам | 0,055 |
Железо | 0,098 |
В чем отличие сопротивления от удельного сопротивления?
Сопротивление — это внешнее свойство, зависящее от количества присутствующего материала, от геометрических характеристик проводника и от самого материала, из которого сделан проводник. Удельное сопротивление — это внутреннее свойство проводника, которое не зависит от его размера, а зависит от химического состава вещества и температуры. Получается, что прежде всего на то, каким будет сопротивление, влияют размеры проводника, его форма, материал, из которого он сделан. Удельное сопротивление проводника зависит также от температуры. Когда температура твердых тел увеличивается, то удельное сопротивление возрастает. А в растворах и расплавах — наоборот, уменьшается. В экзаменационных задачах случаи с изменением удельного сопротивления не рассматриваются, а вот в олимпиадных задачах такое встретить можно. Давайте поразмышляем: что чему сопротивляется? Причина электрического сопротивления кроется во взаимодействии зарядов разного знака при протекании тока по проводнику. Это взаимодействие можно сравнить с силой трения, стремящейся остановить движение заряженных частиц. Чем сильнее взаимодействие свободных электронов с положительными ионами в узлах кристаллической решетки проводника, тем больше сопротивление проводника. Проводник с определенным постоянным сопротивлением называется резистор. Вернемся к сравнению электрического тока с водой: как молекулы воды из крана движутся сверху вниз, так и электрический ток имеет определенное направление — от катода к аноду. Электрический заряд условно в нашем примере аналогичен массе воды, а напряжение — напору воды из крана. Закон ОмаСила тока, напряжение и сопротивление связаны между собой соотношением, которое называется закон Ома : Для упрощенного понимания закона Ома можно использовать данный треугольник. Чтобы вспомнить формулу для нахождения той или иной величины, нужно ее закрыть рукой. Если оставшиеся открытыми величины стоят бок о бок, то они перемножаются друг с другом (U=IR). А если одна величина стоит выше другой, то в таком случае мы делим их друг на друга (I=U/R или R=U/I) Данный закон справедлив для участка цепи, на который не действуют сторонние силы. Разберем задачу из контрольно-измерительных материалов ЕГЭ (номер 12). Ниже на рисунке приведена схема электрической цепи, в которой провода можно считать идеальными. Определите сопротивление резистора, если показания амперметра 0,2 А, а вольтметра — 8 В. Решение: Амперметр подключен последовательно. Следовательно, он показывает силу тока I на всей цепи. Чтобы найти сопротивление на резисторе, воспользуемся законом Ома: Выразим R и подставим значения: Ответ: 40 Работа и мощность электрического токаВернемся к понятию работы. Мы говорили, при перемещении заряда по проводнику электрическое поле совершает работу (А): Если мы выразим заряд из формулы силы тока q=It, то получим, формулу для расчета работы электрического поля (А) при протекании постоянного тока (или просто работа тока): Единица измерения А — Дж (Джоуль). В быту ток совершает работу длительное время, поэтому при определении затраченной электрической энергии используют единицу измерения кВт * ч. Киловатт в час — это энергия, которая потребляется устройством мощностью 1 кВт в течении 1 часа. Учитывая, что 1 ч=3600 с, получим: 1 кВт*ч = 1000 Вт * 3600 с = 3600000 Дж = 3600 кДж Если же работу тока рассчитать за единицу времени, то мы получим мощность постоянного электрического тока. Мощность — величина, обозначающая интенсивность передачи электрической энергии. Единица измерения P — Вт (Ватт). Средняя мощность тока равна: Теперь мы знаем все про мощность и работу тока, а значит, нужно отработать это на практике. Тем более что такие задачи встречаются в ЕГЭ (номер 12). Задача. Решение. Все данные нам уже известны, поэтому можем подставить их в формулу для работы тока и получить ответ. Ответ: 2880 Дж Мощность электроприбора всегда указывается в документации, прилагающейся к нему. Кроме того, нередко ее пишут на самом приборе. Давайте посмотрим на утюг, или стиральную машину дома. Мы увидим, что утюг имеет мощность 1000 Вт, а обычная энергосберегающая лампочка, всего 40 Вт (на то она и сберегающая). Чем больше мощность прибора, тем больше энергии он будет потреблять. Примеры мощностей различных приборов представлены на рисунке. Закон Джоуля — ЛенцаТеперь же свяжем работу тока и теплоту, которая выделяется на проводнике за некоторое время t. Почему так происходит? Электрический ток оказывает тепловое действие на проводник. Количество теплоты, которое при этом выделяется, будет рассчитываться по закону Джоуля — Ленца : Количество теплоты, выделяемое за время в проводнике с током, пропорционально произведению квадрата силы тока на этом участке и сопротивления проводника: Единица измерения Q — Дж (Джоуль). В электронагревательных приборах используются проводники с высоким сопротивлением, что обеспечивает выделение тепла на определенном участке. Так, проволоку из нихрома (сплав никеля с хромом) применяют в электронагревательных элементах, работающих при температуре до 1000 ℃ (резисторах, например). Нихром относится к классу сплавов с высоким электрическим сопротивлением, что определяет его применение в качестве электрических нагревателей. Этот сплав используется также в печах обжига и сушки и различных аппаратах теплового воздействия, например, в фенах, паяльниках или обогревателях. Кто первый ввел понятие «электрический ток» в науку? Ответ: Андре-Мари Ампер. Еще немного про электричество…
ТерминыИсточник тока — устройство, разделяющее положительные и отрицательные заряды. Сторонние силы — силы неэлектрического происхождения, вызывающие разделение зарядов в источнике тока. Фактчек
Проверь себяЗадание 1.
Задание 2.
Задание 3.
Задание 4.
Задание 5.
Ответы: 1.— 2; 2. — 1; 3.— 4; 4.— 1; 5. — 3. Ещё раз о том, что собою представляет электрический ток.Многие прежние представления учёных оказывались ошибочными после того, как открывались новые подробности устройства механизма Природы. Например, вплоть до середины 19 века в науке доминировало представление о двух видах «электрического флюида», создающего в телах электрические заряды противоположного знака — положительные и отрицательные. Именно через «конфликт» между двумя разными «электрическими флюидами», который, как предполагалось, возникает при их встречном движении по проводнику, при замыкании положительного и отрицательного выводов «Вольтова столба», датский учёный Ганс Эрстед описал в 1820 году своё эпохальное открытие влияния электрического тока на магнитную стрелку. Это влияние электрического тока на магнитную стрелку, как подметил Эрстед, обусловлено образованием вихревого движения особой материи вокруг провода, по которому протекает электрический ток. Впоследствии английский физик Майкл Фарадей, заменивший в этом опыте Эрстеда магнитную стрелку на железные опилки, назвал наблюдаемое с их помощью явление «магнитным полем», имеющим вихревой характер. Когда были открыты электроны, субатомные частицы, обычно движущиеся по своим орбиталям вокруг ядер атомов вещества, но способные также легко уходить в «свободные полёт», учёным стало ясно, что электрический ток в проводниках создают именно «свободные электроны», когда они упорядоченно движутся под действием внешней силы. Соответственно, с открытием в 1897 году английским физиком Джозефом Томсоном свободных электронов стало окончательно ясно, что такие явления электростатики как заряжание тел положительным электричеством или заряжание тел отрицательным электричеством, происходят в тех случаях, когда с поверхности электрически нейтральных тел каким-либо путём снимаются свободные электроны или наоборот они переносятся на их поверхность. Примеры образования разноимённых электростатических зарядов в телах с помощью трения. Примеры образования разноимённых электростатических зарядов в телах с помощью трения. При внешнем фотоэффекте, открытом в 1887 году немецким физиком Генрихом Герцем и детально изученном русским физиком Александром Столетовым в 1888-1889 годах, происходит выбивание свободных электронов с поверхности этих тел падающим на эти тела светом высоких энергий (ультрафиолетом, рентгеновскими лучами, гамма-излучением). Тела, теряющие таким образом свободные электроны, одновременно с этим теряют свой электрический заряд, становясь электрически нейтральными или даже положительно заряженными. Все эти эффекты говорят нам о том, что сами по себе свободные электроны не могут покидать тела, даже если они являются электрически заряженными. Чтобы свободный электрон ушёл за пределы поверхности того или иного тела, он должен получить определённой величины энергетический импульс, сообщающий ему дополнительную энергию, достаточную для отрыва от поверхности тела. Такую энергию выхода за пределы вещества свободные электроны получают не только при фотоэффекте и электризации тел механическим путём, но также и при сильном нагревании тел. Однако, если нет ни того, ни другого, ни третьего, свободные электроны не покидают тел. В этой связи возникает закономерный вопрос: как ведут себя свободные электроны в тех или иных телах, когда никакие внешние силы на них не действуют? Простейшие опыты по электростатике показывают, что заряженные тела одного знака, отталкиваются друг от друга, а разноимённые — притягиваются. На этих рисунках представлены электрические заряды и силовых линии электрических полей. На этих рисунках представлены электрические заряды и силовых линии электрических полей. Свободные электроны — это заряды одного знака. Соответственно, они всегда стремятся держаться подальше от других свободных электронов, находящихся внутри тех же тел. А если таких свободных электронов в теле миллиарды штук, и за пределы этих тел, (даже находясь на их поверхности!) они выйти не могут, как газ не может выйти из закупоренной ёмкости, что тогда? Кстати, среднее значение концентрации электронов в каждом кубическом сантиметре металла составляет примерно 10 в 23 степени. Надо думать, что столь огромное количество свободных электронов подобно молекулам воздуха создаёт в проводниках своего рода «электронный газ», который может находиться как в состоянии давления, так и в состоянии разрежения, а также в состоянии равновесия с положительным зарядом атомных ядер вещества. В последнем случае тело является электрически нейтральным. Средневековые учёные интуитивно так и понимали природу электричества, связывая его с представлением об «электрическом флюиде». Вот только они не могли догадаться, что тело приобретает положительный заряд при снижении внутреннего давления в «электронном газе», за счёт снятия с поверхности тела части свободных электронов, а отрицательный заряд тело приобретает, когда происходит повышение давления «электронного газа», за счёт переноса на поверхность тела дополнительных свободных электронов. Таким образом оба знака заряда (плюс и минус) создаёт в телах «электронный газ», находящийся в состоянии повышенного или пониженного давления. Соответственно, чтобы нейтрализовать электрический заряд, находящийся на поверхности тела, необходимо сделать так, чтобы электроны могли перейти оттуда, где есть их переизбыток, туда, где имеется их дефицит. То обстоятельство, что электростатические заряды, находящиеся на поверхности заряженных тел (электростатика), а также электрический ток, протекающий по проводникам (электродинамика), создают эффекты, выходящие далеко за пределы этих тел, дало учёным повод предположить существование материальных полей взаимодействия — электрического и магнитного. На этом рисунке электрическое поле представлено сиреневым цветом, а вихревое магнитное поле — синим. Провод, по которому проходит электрический ток, и с которым связаны эти явления, здесь не показан, но его наличие надо обязательно иметь ввиду, так как без участия и упорядоченного движения свободных электронов существование электрического и магнитного полей невозможно, кто бы и что бы ни говорил. (Подробно я поясню это позже). Со временем учёным стало понятно, что силовое электрическое поле, через которое со скоростью света передаётся силовое взаимодействие между электронами, представляет собой особый, отличный от вещества вид материи, способный заполнять собой в веществе всё межатомное и внутриатомное пространство. Поэтому объяснение сущности электрического, магнитного и суммарного электромагнитного поля в учебниках физики не обходится без упоминания «особой формы материи». Пример: «Электрическое ( электростатическое) поле — особая форма материи, передающее воздействие одного электрического заряда на другой электрический заряд в соответствии с законом Кулона». (Справочник по физике, автор Хорошавин С.Г.). Скорость передачи силового взаимодействия между электронами и другими субатомными частицами, ограниченная скоростью 300 тысяч км/сек, по всей видимости, определяется исключительно электромеханической упругостью и плотностью этого межатомного и внутриатомного материального «наполнителя». Причём самим электронам свойственно двигаться внутри электропроводящих тел под воздействием внешней силы со скоростью всего несколько миллиметров в секунду. Как согласуется между собой крайне медленная скорость упорядоченного движения электронов в проводе с очень быстрой скоростью распространения по проводу силового электрического поля? Зная о том, что свободные электроны образуют в металлах «электронный газ», и о том, что пространство между электронами плотно заполнено «особой материей, отличной от вещества», из которой формируются электрическое и магнитное поля, мы можем движение электрического тока по проводам уподобить потоку жидкости в гидравлической системе. В обоих системах (электрической и гидравлической) с наивысшей скоростью передаётся по замкнутой цепи давление воды и напряжение электрического поля. Для воды эта скорость равна 1500 м/сек, для электрического поля она равна 300 тыс. км/сек. Если отследить в воде, которая под давлением движется по трубе, скорость отдельных капель или молекул, то окажется, что её величина составляет лишь единицы метров в секунду. Аналогично обстоит дело и с движущимися в потоке свободными электронами, который мы называем электрическим током. Электроны движутся в потоке ещё медленнее, чем молекулы воды, зато электрическое напряжение (аналог давления в воде) распространяется по проводам с гигантской скоростью. Теперь, когда мы имеем некоторое представление о процессах, протекающих в электрических проводах, мы можем более детально представить, что такое электрический ток. Когда в обмотке электрического генератора, вырабатывающего электроэнергию, свободные электроны сдвигаются с места под воздействием магнитного поля изменяющейся силы и перемещаются в ту или иную сторону вдоль провода, пусть даже и на микроскопическое расстояние. . они толкают и деформируют своими электрическими полями электрические поля соседних электронов, те также сдвигаются со своего места на микроскопическую величину в направлении действия силы и в свою очередь своими электрическими полями толкают и деформируют электрические поля других соседних электронов. Так происходит движение вширь и вдоль провода объёмной упругой волны электрического поля, которая за счёт свойств «особой материи», отличной от вещества, распространяется со скоростью света. Напомню читателю на всякий случай: «Электрическое (электростатическое) поле — особая форма материи, передающее воздействие одного электрического заряда на другой электрический заряд в соответствии с законом Кулона». (Справочник по физике, автор Хорошавин С.Г.). Учитывая то, что свободные электроны своей совокупностью образуют в телах «электронный газ», не покидающий пределы наружной поверхности проводника, то упругая объёмная волна напряжения (давления) электрического поля, передающая силовое взаимодейстсвие между электронами, распространяется по проводнику (внутри «электронного газа») как по трубчатому волноводу, и за его пределы она не выходит. Движение по проводу этой упругой волны электрического напряжения (электродвижущей силы, ЭДС) лучше всего объясняет рисунок американского инженера Николы Тесла, с помощью которого он также объяснил, как можно передавать электрическую энергию на любые расстояния всего по одному проводнику, нагруженному на свободном конце электростатической ёмкостью. Обратите внимание на то, как работает на конце проводника электростатическая ёмкость в виде токопроводящей сферы, на наружной поверхности которой плотность электрических зарядов может то увеличиваться, то уменьшаться. Её аналогом в гидравлической системе является эластичная (резиновая) ёмкость, наружный размер которой может то увеличиваться, то уменьшаться. За счёт нагнетания на поверхность уединённой электростатической ёмкости электрических зарядов или за счёт снятия с её поверхности электрических зарядов и возможно организовать передачу электроэнергии по одиночному проводнику. Этот же принцип и этот же эффект «эластичной ёмкости», возникающий при движении электрических зарядов по поверхности проводников под действием Кулоновских сил, используется в радиотехнике для возбуждения в пространстве, окружающем проводник, радиоизлучений. Ниже патент, выданный инженеру Н.Тесла в США 20 марта 1900 года, на систему для передачи электрической энергии без проводов, причём это дополнение к его раннему патенту от 1897 года: Слева передающая установка, справа приёмная установка, использующие электростатические ёмкости на свободных концах проводников, излучающих электрическую энергию в пространство и принимающих её из пространства. Правда, сам Тесла, придумал эти установки для передачи электрической энергии не через пространство, а через землю. В этом случае, говорил он, можно передавать энергию на любые расстояния с весьма малыми потерями. Что касается так называемого «магнитного поля», которое всегда является вихревым по характеру, то учёным было изначально ясно, что оно образуется только при движении электрического тока. В любой современной энциклопедии можно прочесть следующее утверждение: «Магнитное поле — это поле, действующее как на движущиеся электрические заряды, так и на тела, обладающие магнитным моментом, независимо от состояния их движения. Магнитное поле можно назвать особым видом материи, посредством которой осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом. Вместе, магнитное и электрическое поля образуют электромагнитное поле». Источник: https://ru.wikipedia.org/wiki/Магнитное_поле Как видим, и в случае с магнитным полем мы тоже имеем дело с материей, отличной от вещества. Только, если в случае с электрическим полем мы имеем в телах «электронный газ», находящийся под давлением (когда тела заряжены отрицательно) или в состоянии разрежения (когда тела заряжены положительно), то в случае с магнитным полем мы имеем вихревое движение этой же тончайшей материи, отличной от вещества, причём это вихревое движение тончайшей материи может охватывать области, простирающиеся на некоторое расстояние за пределы проводника. То обстоятельство, что неподвижные электростатические заряды не создают магнитные поля, их создают только движущиеся упорядоченно электрические заряды, указывает нам направление поиска первопричины возникновения магнитных полей вокруг проводов с током. В любой энциклопедии можно прочесть следующую информацию: «Магнитное поле создаётся (порождается) током заряженных частиц, или изменяющимся во времени электрическим полем, или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам)». Поскольку всё большое состоит из малого, нам нетрудно понять, что большие магнитные поля образуются из слияния малых вихревых магнитных полей, постоянно присутствующих вокруг электронов по причине того, что они обладают собственными магнитными моментами. Картина суммарного магнитного поля, возникающего вокруг многовитковой проволочной катушки при протекании по ней тока: Справка из энциклопедического словаря: «Магнитный момент элементарных частиц (электронов, протонов, нейтронов и других частиц), как показала квантовая механика, обусловлен существованием у них собственного механического момента — спина. Спин (от англ. spin, буквально — вращение, вращать(-ся)) — собственный момент импульса элементарных частиц)». Таким образом мы приходим к пониманию, что магнитное поле как микрообъект существует вокруг электронов всегда, по причине того, что они обладают вращением, спином. Как макрообъект магнитное поле возникает вокруг тел только тогда, когда большое количество электронов под действием внешней силы (ЭДС) приходит в упорядоченное поступательное движение, при этом их оси вращения (магнитные полюса электронов) занимают в пространстве одинаковое положение. В этом случае и происходит слияние миниатюрных вихрей каждого отдельно взятого электрона в один большой вихрь, окружающий тело, по котором течёт электрический ток. Если всё это понятно, и ничто не вызывает возражений, то можно перейти к подведению некоторых итогов. Первый и главный вывод: ни электрическое поле, ни вихревое магнитное поле не может существовать в отрыве от электрических зарядов. ЭПИЛОГ Как я написал в самом начале этой статьи, многие прежние представления учёных оказывались ошибочными после того, как открывались новые подробности устройства механизма Природы. Когда английский учёный Майкл Фарадей открыл явление электромагнитной индукции, это случилось 29 августа 1831 года, он просто увидел, что электродвижущая сила (ЭДС), возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Причём величина ЭДС не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Спустя почти 30 лет, в 1860-х годах, шотландский учёный Джеймс Максвелл, который разумеется не знал и даже не догадывался о существовании электронов, они были открыты только в 1897 году, высказал смелую гипотезу об электромагнитной природе света. Впоследствии подтвердилось, что свет и все другие излучения (инфракрасное, ультрафиолетовое, рентгеновское) действительно порождаются движением электронов, вот только не факт, что свет распространяющийся в физическом вакууме (в безвоздушном пространстве) имеет электромагнитную природу! Возможно, что в случае со светом, радиоволнами и прочими излучениями, порождаемыми движением электронов в вакуумных приборах или на поверхности проводников, мы имеем дело с иными формами материи, нежели изученные нами электрические и магнитные поля. Иллюстрация ниже показывает устройство и принцип работы рентгеновской трубки, в которой жёсткое рентгеновское излучение порождается за счёт резкого торможения свободных электронов, предварительно ускоренных в сильном электрическом поле. Причём сами свободные электроны, при резком торможении которых рождаются рентгеновские лучи, за пределы рентгеновской трубки не вылетают. Почему я так обозначил проблему современной физики? Смотрите как подаётся история, связанная с Д.К.Максвеллом и с его «Электромагнитной теорией света» полуторавековой давности: «. Оказалось, что не только ток, но и изменяющееся со временем электрическое поле порождает магнитное поле. В свою очередь, в силу закона Фарадея, изменяющееся магнитное поле снова порождает электрическое. В результате, в пустом пространстве может распространяться электромагнитная волна. Из уравнений Максвелла следовало, что её скорость равна скорости света, поэтому Максвелл сделал вывод об электромагнитной природе света. » Максвеллу было простительно сделать в 1860-х годах предположение о том, что не только магнитное поле является вихревым, но и электрическое поле тоже может быть вихревым, и что оба они могут существовать в отрыве от электронов, он ведь ничего не знал об электронах и даже не подозревал об их существовании. Но мы то уже знаем и про электроны, и про свойства создаваемых ими полей, и мы понимаем, что существование электрического и магнитного полей в отрыве электронов невозможно! Давайте рассмотрим случай, представленный на рисунке ниже. Так в учебниках современной физики рассказывается об образовании внутри замкнутого металлического кольца вихревого электрического поля. В показанном на этом рисунке случае, изменяемый рукой оператора магнитный поток, пронизывая замкнутое металлическое кольцо, непосредственно воздействует на свободные электроны, и строго по закону электромагнитной индукции, вызывает их сдвиг в направлении, указанном тонкой стрелкой синего цвета. В замкнутом металлическом кольце под воздействием изменяющегося магнитного потока свободные электроны сдвигаются фактически все одновременно, следовательно имеющиеся расстояния между ними, обусловленные действием Кулоновских сил не меняются. А значит, электродвижущая сила (ЭДС) в этом случае не возникает! Еинд = О. То есть, вихревого электрического поля, которое должно характеризоваться величиной напряжённости, нет! А вот если бы металлическое кольцо не было замкнутым, то под воздействием изменяющегося магнитного поля мы бы имели скопление свободных электронов на одном его конце, недостаток свободных электронов на другом его конце, и в дополнение к этому мы бы имели некоторую напряжённость электрического поля между наведёнными зарядами. К сожалению, несмотря на такие очевидные вещи, современная мировая наука отказывается признавать ошибочность теории Д.К.Максвелла, построенной на предположении, что электрические и магнитные поля могут существовать в отрыве от электрических зарядов. До сих пор заявляется, что оба эти поля могут существовать даже в вакууме, в котором отсутствуют малейшие признаки какого-либо вещества. В школах и ВУЗах учителя до сих пор преподают учащимся, что для образования вихревого электрического поля «проводник вообще не нужен! Проводник является всего лишь индикатором того, что здесь есть электрическое поле! Если убрать проводник и оставить меняющееся магнитное поле, то электрическое поле всё-равно возникает в пространстве. Причём линии этого поля, силовые линии, направлены вот так, они замкнуты. Такое поле, линии которого замкнуты, называется вихревым. Когда оно появляется? При изменении магнитного поля. Итак, пишем вывод: При изменении магнитного поля в пространстве, в нём возникает вихревое электрическое поле. Проводник при этом не нужен! Без всякого проводника. В пустоте, в вакууме возникает вихревое электрическое поле. » Источник: https://youtu.be/FAqvdIPttjo Я же хочу сказать следующее: То обстоятельство, что скорость распространения электрического поля в проводах равна скорости света в вакууме, позволяет высказать предположение, что и в проводах, и в вакууме (безвоздушном пространстве) имеет место распространение упругих волн в одной и той же тончайшей среде, которая отлична от вещества. Причём, если электрическое поле распространяется в проводах со скоростью света как упругая продольная волна, то и в вакууме (безвоздушном пространстве) волна света тоже представляет собой упругую продольную волну, движущуюся наступательно. При этом в реальной волне света равно как и в радиоволне нет места как вихревому магнитному полю, так и вихревому электрическому полю! Пытаться объяснять явление поляризации света (равно как и явление поляризации радиоволн) с помощью поперечных колебаний магнитного и электрического полей, якобы существующих в отрыве от свободных электронов, было большой ошибкой учёных 19 века. Создание в ХХ веке квантовой физики дало подсказку, но ею никто из академиков не спешит воспользоваться, что явление поляризации света можно легко объяснить вращением частиц света («фотонов») вокруг своей оси. Обычный свет после прохождения через поляризатор становится поляризованным, и это обстоятельство заставило учёных придумать поперечные электромагнитные волны. Хотя, казалось бы, что может быть проще и яснее?! При пропускании неполяризованного света через поляризатор тормозятся все фотоны, оси которых не совпадают с главной осью поляризатора, но те фотоны, у которых оси совпадают с главной осью поляризатора, проходят сквозь него свободно. Так из неполяризованного света получается поляризованный свет. Это исчерпывающее объяснение. И не надо никому рассказывать волшебные сказки про «поперечные колебания вихревых полей, электрического и магнитного в абсолютной пустоте»! Фотоны — это возбужденные частицы всё той же материи, отличной от вещества, в которой возникают хорошо известные нам электрические и магнитные поля. Причём гипотетические «поперечные колебания вихревых полей», о которых рассказывает современная физика, нельзя ни нарисовать, ни представить в здравом воображении! А то, что подаётся в учебниках физики под видом радиоволны, является несуразицей, в которой отсутствует даже намёк на то, что поля, электрическое и магнитное, колеблющиеся поперёк направления распространения радиоволны в пространстве, являются вихревыми, как того требует «Электромагнитная теория света» Д.К.Максвелла: Где здесь хоть намёк на то, что в радиоволне имеет место движение/колебание именно вихревого магнитного поля и именно вихревого электрического поля?! Реальная картина радиоволны, имеющей продольную компоненту и состоящей из «фотонов», может быть, например, такой: Если я достаточно ясно всё объяснил, мне остаётся лишь надеется, что процесс ревизии мировой физической науки и переписывания учебников физики первыми начнут российские учёные. |